Work-Efficient Parallel Union Find

Natcha Simsiri, Kanat Tangwongsan, Srikanta Tirthapura, Kun-Lung Wu Presented By: Sanjana Mupparaju

Problem: Incremental Graph Connectivity (IGC)

- Maintain a data structure that can efficiently answer whether two vertices of a graph are connected
 - Must handle the insertion of edges
- Why?
 - Rise of large linked and dynamic graph data social networks, recommendation graphs,
 communication networks (IoT devices)
 - These graphs are updated continuously as new connections (edges) arrive
 - Many applications need to query connectivity in real time
 - Sequential algorithms cannot keep up with this scale

Equivalence to Union-Find

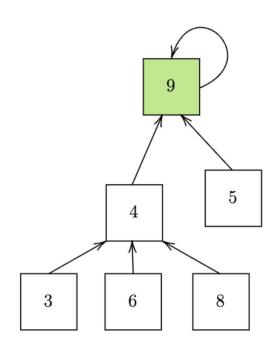
- Union-Find (Disjoint Set Union) is a data structure representing disjoint sets supports which supports two key operations.
 - union(u, v) given elements u and v, combine the sets of u and v into one, and return a handle/pointer to the combined set.
 - o **find(v)** given element v, return a handle/pointer to the set containing v. If two items, u and v, are in the same set, then it is guaranteed that find(u) = find(v).
- Natural equivalent to IGC
 - Disjoint sets = connected components of input graph
 - \circ If two vertices of graph are connected, then find(u) = find(v).
 - Adding edge (w, x) to graph is equivalent to union(w, x) operation.

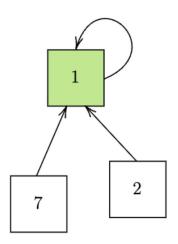
Motivation to Parallelize

- In the applications we mentioned, this is usually a streaming problem.
 - Edges arrive continuously
 - Edges arrive in a large volume
- Scalable, parallel, dynamic algorithm are needed to properly utilize modern streaming systems which provide softwares for parallel processing.
 - IBM Streams
 - Spark Streaming

Review: Sequential Union Find Data Structure

- (Tarjan, 1975) Optimal Sequential Data Structure
 - o $O(\alpha(m, n))$ amortized time per find(u)
 - α is the inverse Ackermann function, n is number of vertices in graph, and m is the number of operations
- Forest-Of-Trees Implementation with Optimizations
 - Union-By-Rank parent of root of smaller ranked tree is set to root of larger ranked tree
 - Path Compression find(u) updates pointer of every node it walks along to root node
- Parallelizing is difficult because of shared structure that is modified every operation.





Related Work

- McColl et al. (STINGER)
 - o more general: maintain connected components in fully dynamic graphs
 - o engineering focus: no theoretical guarantee
- Manne and Patwary
 - o parallel union-find for distributed memory computers
- Patwary et al.
 - shared memory parallel algorithm for computing spanning forest using union find
 - no theoretical guarantees work efficiency
- Berry et al (X-stream)
 - methods for maintaining connected components in parallel graph stream model
 - respects sequential ordering of edges
 - ages out edges
 - no provable parallel complexity bounds
- Shun et. al + Hillel
 - algorithms for graph connectivity
 - o edges know in advance
- Shiloach and Vishkin
 - not easy to perform parallel path compression

Parallel Setup

- V fixed vertex set
- graph stream A sequence of mini-batches A₁, A₂, A₃,...
 - each minibatch is a set of edges on V
 - edges can be viewed as a single union(u, v) operation
 - minibatch is a set of unions that are applied parallely
 - o minibatch can be of different sizes
- $\bullet \quad \mathsf{G} \square = (\mathsf{V}, \cup_{\mathsf{i}=\mathsf{1}}^\mathsf{t} \mathsf{A}_\mathsf{i})$
 - graph at end of observing A,
- Operations
 - o Bulk-Union takes minibatch as input, and adds edges to graph
 - one union operation/edges
 - Bulk-Same-Set takes minibatch of vertex pairs, and for each pairs, returns whether the pair are connected in the graph
 - two find operations/vertex-pair
- Bulk-Union and Bulk-Same-Set must occur sequentially

Simple Parallel Union-Find Data Structure

- Sequential Union Find Lemma: Every union-find tree has height O(logn).
 O(logn) sequential time for union and find operations follow.
- Parallel data structure maintains instance of union-find data structure with union-by-size but read-only finds (no path-compression).
 - Simple-Bulk-Set-Same: O(logn) parallel depth, O(qlogn) parallel work where q is number of queries in mini-batch.

Simple Bulk-Union

Intuition: Safe to run multiple *unions* if they operate on different trees.

Step 1: Parallely, relabel edges (u, v) as (find(u), find(v)). Let these set of edges be called A'. Remove all edges where find(u) = find(v).

Step 2: Now, we are working with graph (H, A') - where H is all the vertices appearing in the edges of A'. Compute connected components of H parallely, outputting C, the set of connected components of H.

Step 3: Parallel-Join each connected component of C

Simple Bulk-Union

Intuition: Safe to run multiple *unions* if they operate on different trees.

Step 1: Parallely, relabel edges (u, v) as (find(u), find(v)). Let these set of edges be called A'. Remove all edges where find(u) = find(v).

O(blogn + b) work + O(logn) depth

Step 2: Now, we are working with graph (H, A') - where H is all the vertices appearing in the edges of A'. Compute connected components of H parallely, outputting C, the set of connected components of H.

O(b) work and O(log max (b, n)) depth: Gazit's Algorithm

Step 3: Parallel-Join each connected component of C

O(b) work and O(logn) depth

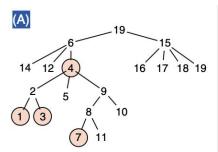
Bulk-Find

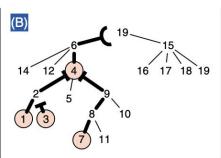
Phase 1: Parallely run BFS from all queried vertices.

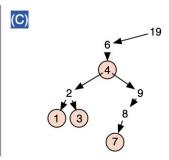
- If multiple flows meet up, only one will move on
- If node was visited, flow will stop
- Maintain all edges traversed as parent child.

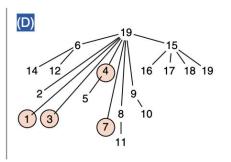
Phase 2:

Reverse BFS from root, reassigning parent pointer.









Response Distributor

- Have a sequence of λ edges, (from_i, to_i).
- To efficiently do the BFS in phase2, need a way to efficiently find allFrom(f), where from; = f.
- h() hash function from from is to $p = 3\lambda$.
- Constructing RD
 - Compute hash for each (from_i, to_i) and sort into ordered array A.
 - Create array o of length p + 1, where o_i marks beginning of pairs whose hash value is i. If none has to i, then $o_i = o_{i+1}$.
- allfrom(f).
 - Calculate h(f)
 - Look in A between $o_{h(f)}$ and o_{hf+1} .-1.

Algorithm 4: Bulk-Find(U, S)—find the root in U for each $s \in S$ with path compression.

Input: U is the union find structure. For i = 1, ..., |S|, S[i] is a vertex in the graph **Output:** A response array res of length |S| where res[i] is the root of the tree of the vertex

$$S[i]$$
 in the input.

1:
$$R_0 \leftarrow \langle (S[k], \mathbf{null}) : k = 0, 1, 2, \dots, |S| - 1 \rangle$$

1:
$$K_0 \leftarrow \langle (S[\kappa], \mathbf{null}) : \kappa = 0, 1, 2, \dots, |S| - 1$$

1:
$$K_0 \leftarrow \langle (S[\kappa], \mathbf{nun}) : \kappa = 0, 1, 2, \dots, |S| - 2$$
: $F_0 \leftarrow \mathsf{mkFrontier}(R_0, \varnothing)$ roots $\leftarrow \varnothing$ vi

2:
$$F_0 \leftarrow \mathsf{mkFrontier}(R_0, \emptyset), roots \leftarrow \emptyset, vi$$

2:
$$F_0 \leftarrow \mathsf{mkFrontier}(R_0, \emptyset), roots \leftarrow \emptyset, visited \leftarrow \emptyset, i \leftarrow 0$$

3: while
$$R_i \neq \emptyset$$
 do

4:
$$visited \leftarrow visited \cup F_i$$
 def m

$$R_{i+1} \leftarrow \langle (\mathsf{parent}[v], v) : v \in F_i \text{ and } \mathsf{parent}[v] \neq v \rangle$$

$$roots \leftarrow roots \cup \{v : v \in F_i \text{ where } \mathsf{parent}[v] = v \}$$

7:
$$F_{i+1} \leftarrow \text{mkFrontier}(R_{i+1}, visited), i \leftarrow i+1$$
 2:

> Set up response distribution
8: Create an instance of
$$RD$$
 with $R_{ij} = R_0 \oplus R_1 \oplus \cdots \oplus R_i$

8: Create an instance of
$$RD$$
 with $R_{\cup} = R_0 \oplus R_1 \oplus \cdots \oplus R_i$
 \triangleright **Phase II:** Distribute the answers and shorten the paths

14: For $i = 0, 1, 2, \dots, |S| - 1$, in parallel, make $res[i] \leftarrow parent[S[i]]$

$$P$$
 Priase ii. Distribute the answers $P_0 \leftarrow \{(r,r) : r \in roots\} \ i \leftarrow 0$

9:
$$D_0 \leftarrow \{(r,r) : r \in roots\}, i \leftarrow 0$$

9:
$$D_0 \leftarrow \{(r,r) : r \in roots\}, i \leftarrow 0$$

9:
$$D_0 \leftarrow \{(r,r) : r \in roots\}, i \leftarrow 0$$

9:
$$D_0 \leftarrow \{(r, r) : r \in roots\}, i \leftarrow 0$$

9:
$$D_0 \leftarrow \{(r,r) : r \in roots\}, \iota \leftarrow 0$$

10: **while** $D_i \neq \emptyset$ **do**

10: **while**
$$D_i \neq \emptyset$$
 do

11: For each $(v, r) \in D_i$, in parallel,

For each
$$(v, r) \in D_i$$
, in parallel, parent $[v] \leftarrow r$

$$D_{i+1} \leftarrow \bigcup_{(v,r)\in D_i} \{(u,r): u\in RD.\mathsf{allFrom}(v) \text{ and } u\neq \mathsf{null}\}$$
. That is, create D_{i+1} by expanding every $(v,r)\in D_i$ as the entries of $RD.\mathsf{allFrom}(v)$ excluding null , each

$$D_{i+1} \leftarrow \bigcup_{(v,r)\in D_i} \{(u,r) : u \in RD. \text{allfrom}(v) \text{ and } u \neq \text{null}\}.$$
 That is, create D_{i+1} expanding every $(v,r)\in D_i$ as the entries of $RD. \text{allfrom}(v)$ excluding null, each

riting
$$r$$

inheriting
$$r$$
.

inheritii
$$i \leftarrow i + 1$$

inheriting
$$i \leftarrow i + 1$$

15: return res

- **def** mkFrontier(*R*, *visited*): // nodes to go to next
- 1: $req \leftarrow \langle v : (v, _) \in R \land$

 - **not** *visited*[v] \rangle
- 2: **return** removeDup(req)

Theoretical Guarantees

• response distributor can be constructed in $O(\lambda)$ work and O(polylog(n)) depth

Bulk-Find(U,S)does O(|R∪|)work and has O(polylog(n))depth.

Experimental Setup

- Implemented all algorithms in C++ using the Ligra+ parallel graph processing framework.
- Experiments run on a 72-core Intel Xeon Gold 6252 processor (144 hyper-threads) with 1 TB memory.
- Graphs stored in compressed sparse row (CSR) format for efficient parallel access.
- Compared **Bulk-Parallel Union-Find** against:
- Sequential Union-Find (Tarjan, 1975)
- Existing parallel algorithms (e.g., Shun et al., Hillel & Vishkin)
- Evaluated performance on both **static** and **incremental/dynamic** graph workloads.
- Measured speedup, work efficiency, and parallel depth across varying batch sizes.

Experimental Results

Datasets: Evaluated on large real-world graphs (Twitter, LiveJournal, Orkut, Friendster).

Performance: Achieved up to **40–60× speedup** over the sequential union–find baseline.

Work efficiency: Total work remains close to sequential; scales nearly linearly with core count.

Batch size impact: Larger minibatches yield better parallelism and smaller depth.

Further Work/Limitations

- Algorithm currently handles incremental connectivity extending to fully dynamic graphs (with deletions) remains open.
- Performance depends on batch size selection very small batches offer limited parallel speedup.
- Memory overhead of auxiliary data structures (e.g., Response Distributor) could be reduced.
- Adapting approach to heterogeneous systems (GPUs, distributed memory) could further improve scalability.