Parallel Batch-Dynamic *k*-Core Decomposition

Julian Shun (MIT CSAIL)

Joint work with Quanquan Liu, Jessica Shi, Shangdi Yu, and Laxman Dhulipala

Announcements

- No class next Tuesday 11/11
- Mid-term report due Friday 11/14

Graphs are becoming very large

Size

3.5 billion vertices128 billion edges

Largest publicly available graph

272 billion vertices5.9 trillion edges

Proprietary graph

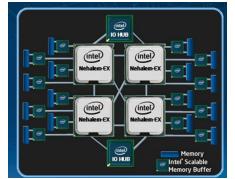
> 100 billion vertices6 trillion edges

Proprietary graph

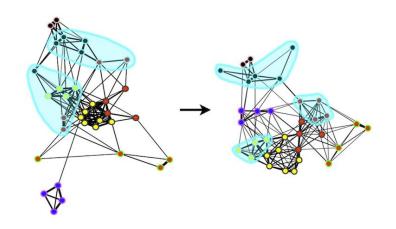
Graphs are rapidly changing (500M tweets/day, 547K new websites/day)

Parallelism and Dynamic Algorithms for High Performance

 Take advantage of parallel machines

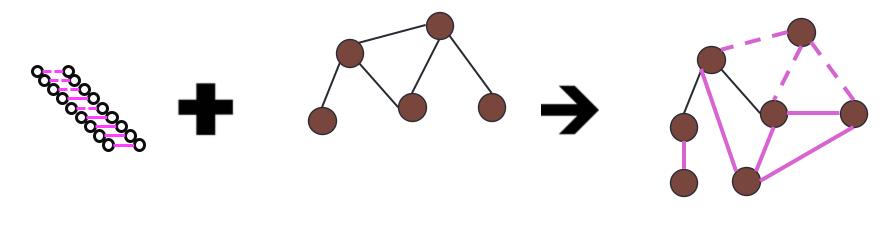


 Design dynamic algorithms to avoid unnecessary work on updates



Parallel Batch-Dynamic Algorithms

Process updates in batches, and use parallelism within each batch



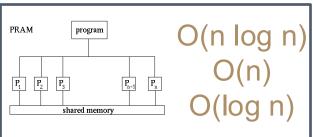
A **batch** of edge insertions/deletions

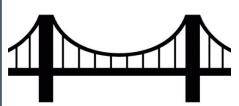
Current graph + Current statistics

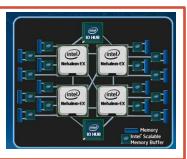
Updated graph + Updated statistics

Our Parallel Batch-Dynamic Algorithms

k-core decomposition
Clique counting
Low out-degree orientation
Maximal matching
Graph coloring
Minimum spanning forest
Single-linkage clustering
Closest pair







Theory

Practice

Quanquan C. Liu, Jessica Shi, Shangdi Yu, Laxman Dhulipala, Julian Shun, "Parallel Batch-Dynamic Algorithms for k-Core Decomposition and Related Graph Problems," SPAA 2022

Related Work on Parallel Batch-Dynamic Algorithms

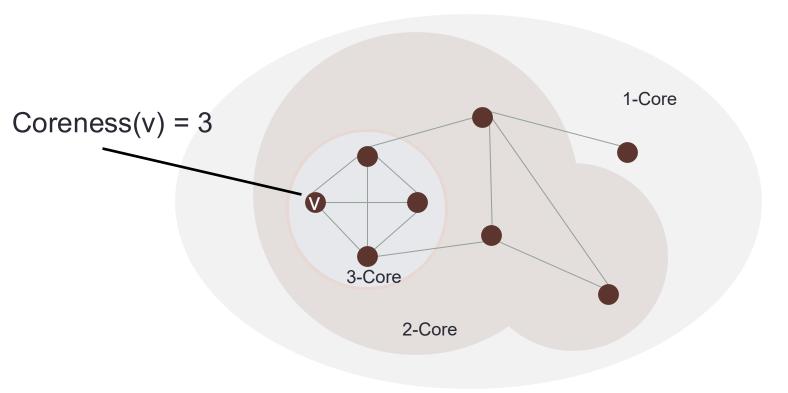
- Triangle Counting [EB10, MBG17]
- Euler Tour Trees [TDB19]
- Connected Components [FL94, MGB13, AABD19]
- Rake-Compress Trees [AABDW20]
- Incremental Minimum Spanning Trees [ABT20]

k-Core Decomposition

k-Core Decomposition

k-core: maximal connected subgraph of G such that all vertices have induced degree $\geq k$

Coreness(v): largest value of *k* where v participates in the *k*-core

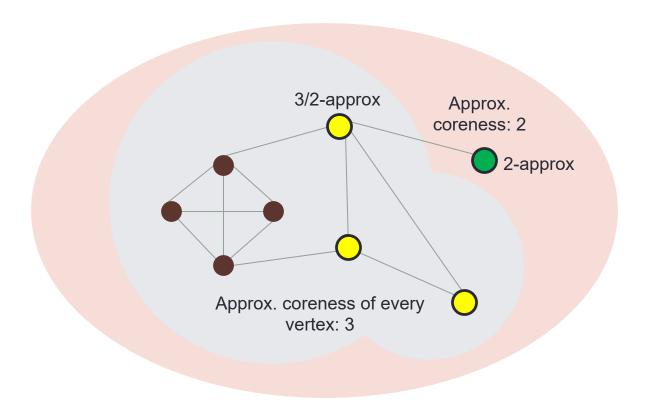


Goal: compute coreness for all vertices

Approximate k-Core Decomposition

k-core: maximal connected subgraph of G such that all vertices have induced degree $\geq k$

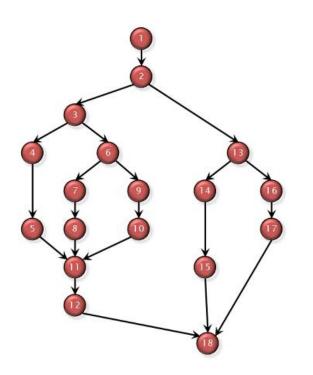
c-Approx-Coreness(v): value within multiplicative c factor of Coreness(v)



Applications of *k*-core Decomposition

- Graph clustering
- Community detection
- Graph visualization
- Protein network analysis
- Approximating network centrality

Work-Span Model



Work = number of operations
Span = length of longest
sequential dependence

Running time ≤ (Work/#processors) + O(Span)

 Goal: Design low-span parallel algorithms that are workefficient (work asymptotically matches that of the best sequential algorithm)

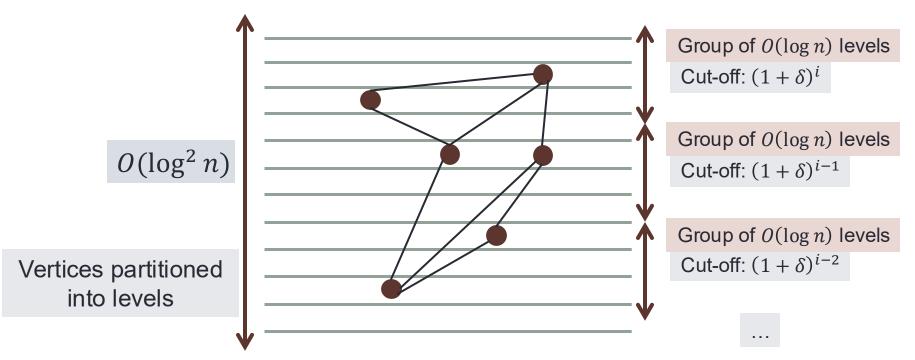
Our Results for k-core Decomposition

- Our algorithm dynamically maintains a $(2 + \epsilon)$ approximation for coreness of every vertex
- A batch of B updates takes $O(B \log^2 n)$ amortized work and $O(\log^2 n \log \log n)$ span with high probability
- Our algorithm is work-efficient, matching the work of the state-of-the-art sequential algorithm by Sun et al.
- Our algorithm is based on a parallel level data structure

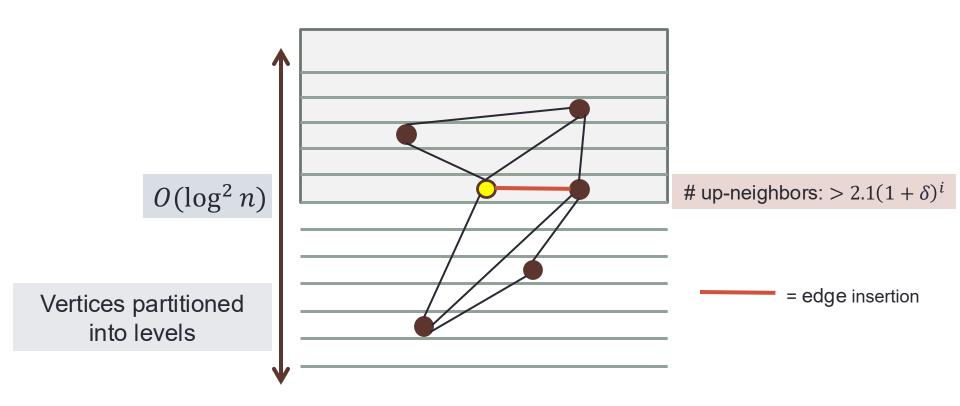
Sequential Level Data Structures for Dynamic Problems

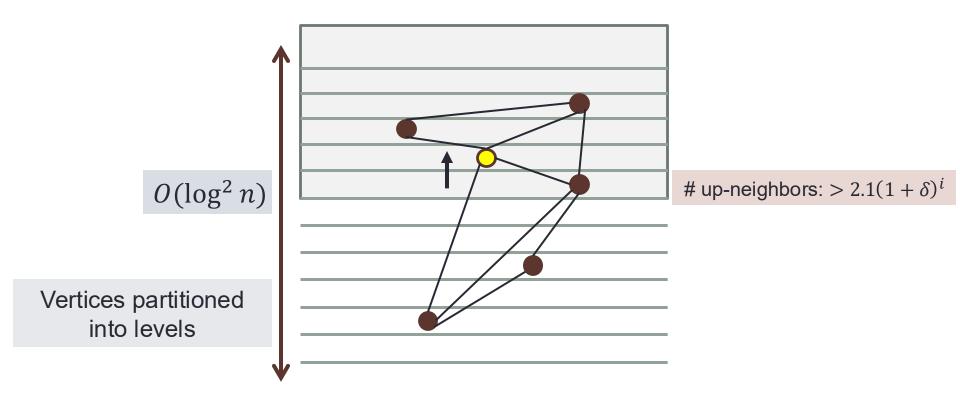
- Maximal Matching [Baswana-Gupta-Sen '18, Solomon '16]
- (Δ + 1)-Coloring [Bhattacharya-Chakrabarty-Henzinger-Nanongkai '18, Bhattacharya-Grandoni-Kulkarni-Liu-Solomon '19]
- Clustering [Wulff-Nilsen '12]
- Low out-degree orientation [Solomon-Wein '20, Henzinger-Neumann-Weiss '20]
- Densest subgraph [Bhattacharya-Henzinger-Nanongkai-Tsourakakis '15]

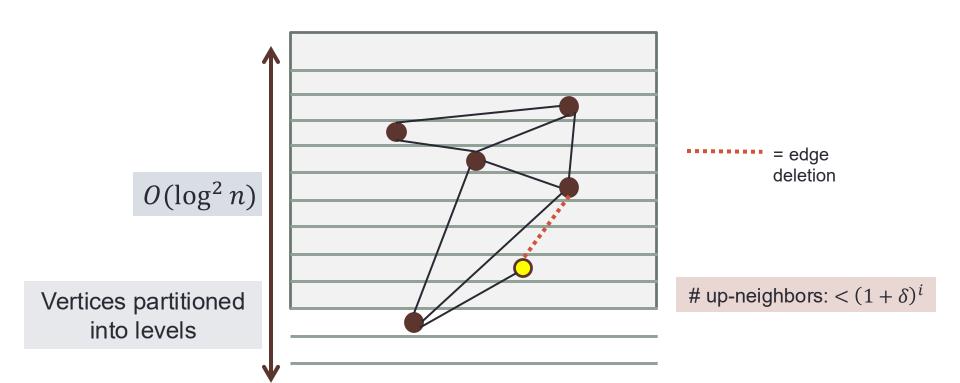
Described by Bhattacharya, Henzinger, Nanongkai,
 Tsourakakis [2015] and Henzinger, Neumann, Wiese [2020]

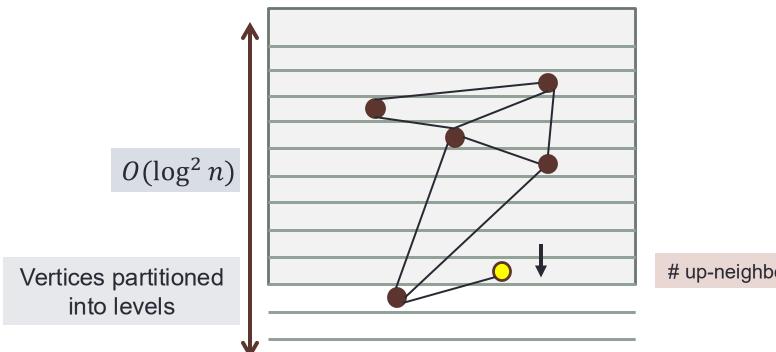


- Maintain invariants per vertex, which give upper/lower bounds on roughly its number of "up-neighbors" (neighbors at around its level and above)
- We prove that levels translate to coreness estimates



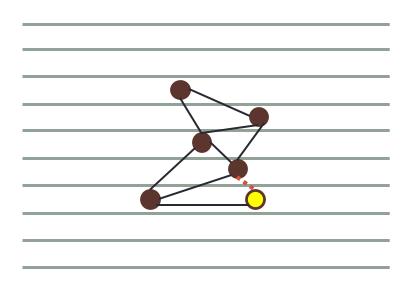




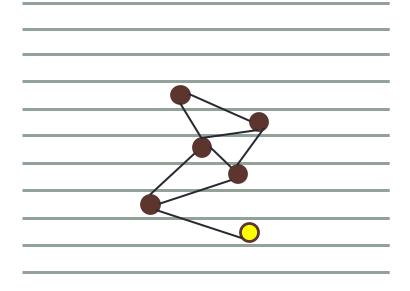


up-neighbors: $<(1+\delta)^i$

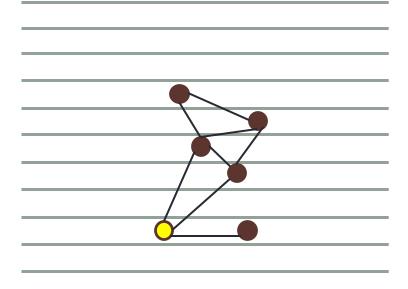
Large sequential dependencies



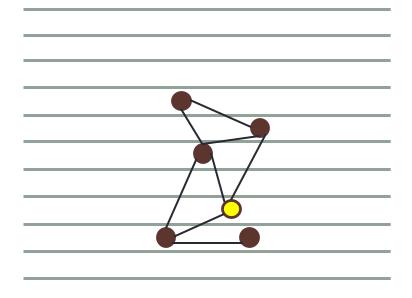
Large sequential dependencies



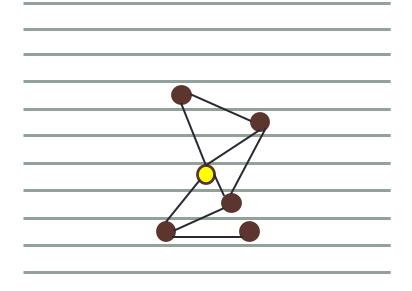
Large sequential dependencies



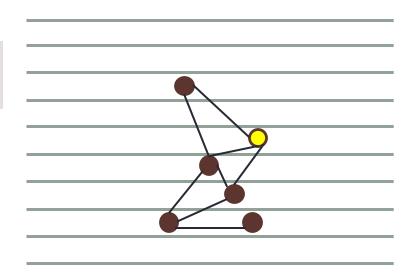
Large sequential dependencies



Large sequential dependencies

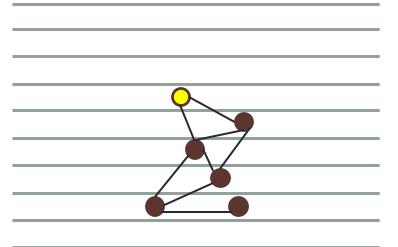


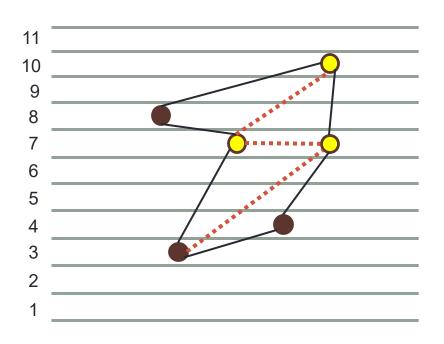
Large sequential dependencies



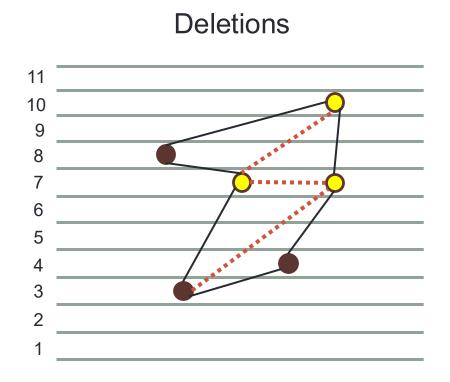
Large sequential dependencies

Only processes one update at a time





= edge deletion

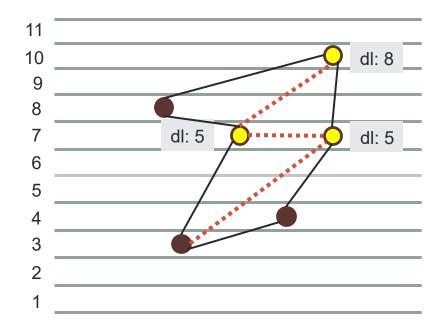


Only the lower bound invariant is ever violated.

Vertices only need to move down, and never up

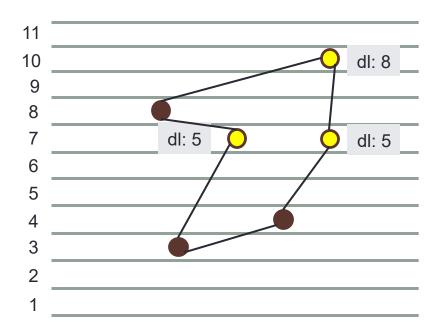
Deletions

For vertices incident to updated edges, calculate desire-level (dl): closest level that satisfies invariants



Deletions

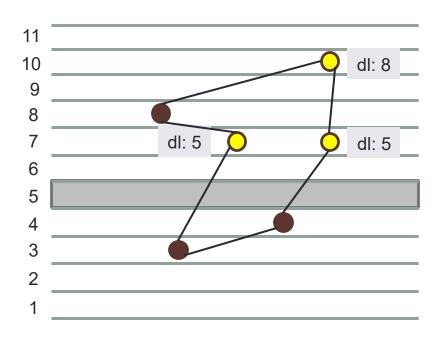
For vertices incident to updated edges, calculate desire-level (dl): closest level that satisfies invariants



Iterate from
bottommost level to
top level and move
vertices to desire-level

Deletions

For vertices incident to updated edges, calculate desire-level (dl): closest level that satisfies invariants



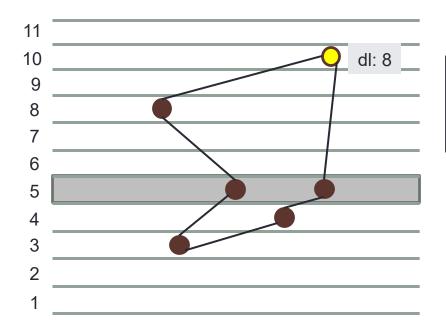
Iterate from
bottommost level to
top level and move
vertices to desire-level

Only the lower bound invariant is ever violated.

To achieve parallelism (low span), we need to move all vertices together for each desire-level

Deletions

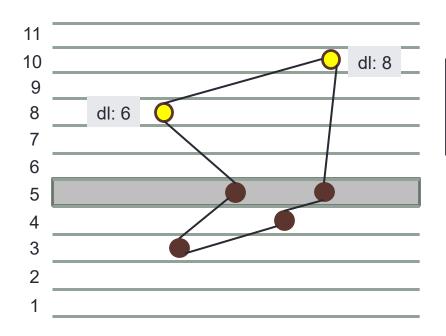
For vertices incident to updated edges, calculate desire-level (dl): closest level that satisfies invariants



Iterate from
bottommost level to
top level and move
vertices to desire-level

Deletions

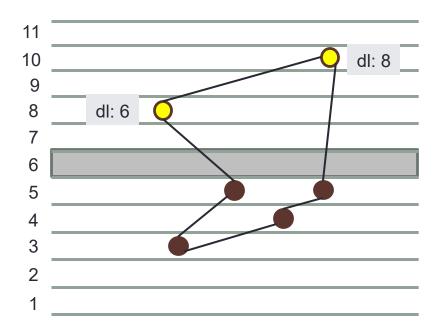
For vertices incident to updated edges, calculate desire-level (dl): closest level that satisfies invariants



Iterate from
bottommost level to
top level and move
vertices to desire-level

Deletions

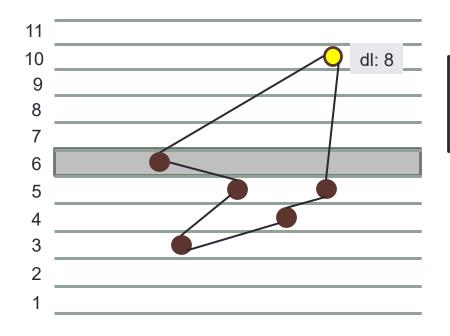
For vertices incident to updated edges, calculate desire-level (dl): closest level that satisfies invariants



Iterate from
bottommost level to
top level and move
vertices to desire-level

Deletions

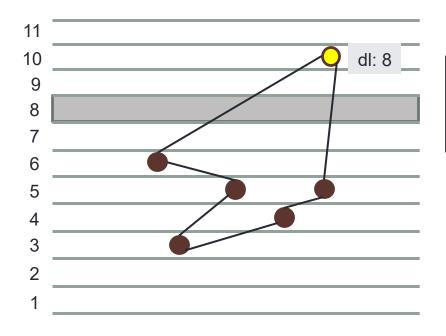
For vertices incident to updated edges, calculate desire-level (dl): closest level that satisfies invariants



Iterate from
bottommost level to
top level and move
vertices to desire-level

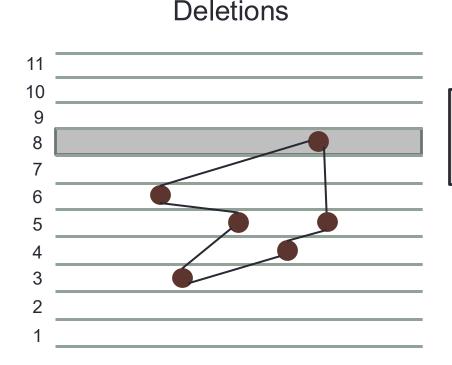
Deletions

For vertices incident to updated edges, calculate desire-level (dl): closest level that satisfies invariants



Iterate from
bottommost level to
top level and move
vertices to desire-level

For vertices incident to updated edges, calculate desire-level (dl): closest level that satisfies invariants

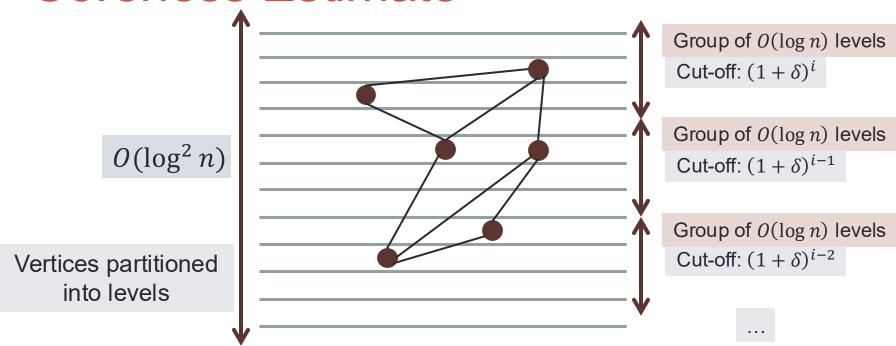


Iterate from
bottommost level to
top level and move
vertices to desire-level

Only the lower bound invariant is ever violated.

Each vertex moves only once, unlike in sequential LDS

Coreness Estimate



- We set the coreness estimate of a vertex to be $(1+\delta)^{\max(\lfloor (level(v)+1)/(4\lceil \log_{1+\delta}n\rceil)\rfloor-1,0)}$
- Exponent is roughly the group number
- Higher vertices have higher coreness estimates
- This gives a $(2 + \epsilon)$ -approximation
- Getting better than a 2-approximation is P-complete
- Automatically get $(4 + \epsilon)$ -approximation to densest subgraph value

Implementation Details

- Designed an optimized multicore implementation
- Used parallel primitives and data structures from the Graph Based Benchmark Suite [Dhulipala et al. '20]
- Maintain concurrent hash tables for each vertex v
 - One for storing neighbors on levels ≥ level(v)
 - One for storing neighbors on every level i in [0, level(v)-1]
- Moving vertices around in the PLDS requires carefully updating these hash tables for work-efficiency

Complexity Analysis

- $O(\log^2 n)$ levels
 - O(log log n) span per level to calculate desire-levels using doubling search
 - $O(\log^* n)$ span with high probability for hash table operations
- Total span: $O(\log^2 n \log \log n)$
- $O(B \log^2 n)$ amortized work is based on potential argument
 - Uses very similar analysis to Bhattacharya, Henzinger, Nanongkai, Tsourakakis [2015]
 - Vertices and edges store potential based on their levels in PLDS, which is used to pay for the cost of moving vertices around
 - We need to map parallel operations to an equivalent set of sequential operations

Experiments

Experimental Setup

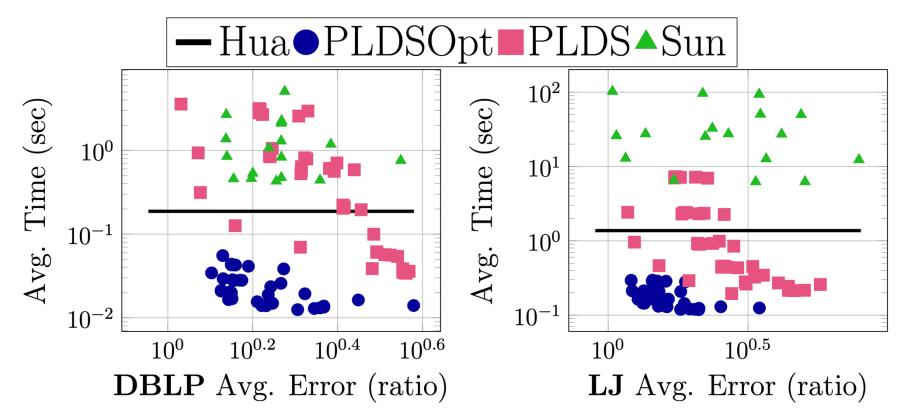
- c2-standard-60 Google Cloud instances
 - 30 cores with two-way hyper-threading
 - 236 GB memory
- m1-megamem-96 Google Cloud instances
 - 48 cores with two-way hyperthreading
 - 1433.6 GB memory
- 3 different types of batches:
 - All batches of insertions
 - All batches of deletions
 - Mixed batches of both insertions and deletions

Runtimes/Accuracy vs. State-of-the-Art **Algorithms**

PLDS: our algorithm

PLDSOpt: optimized PLDS

Hua et al.: parallel, exact, dynamic algorithm Sun et al.: sequential, approx., dynamic algorithm



PLDSOpt: 19-544x speedup over Sun et al. 4.8M vertices, 85

ces, 2.1M edges

PLDSOpt: 2.5–25x speedup over Hua et al.

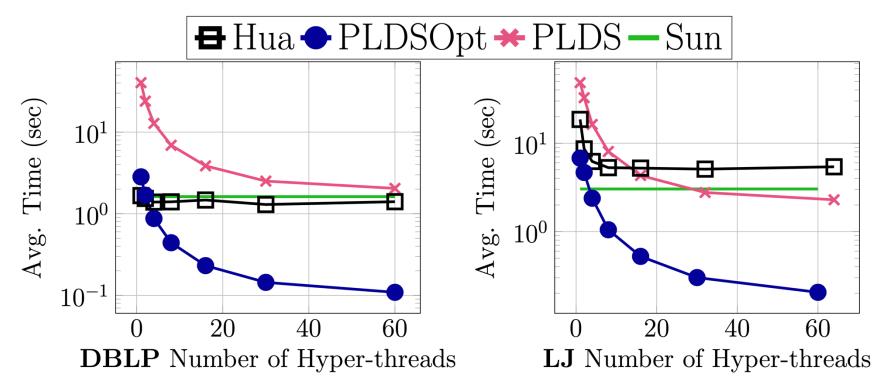
Scalability vs. # Hyper-threads

PLDS: our algorithm

PLDSOpt: optimized PLDS

Hua et al.: parallel, exact, dynamic algorithm

Sun et al.: sequential, approx., dynamic algorithm



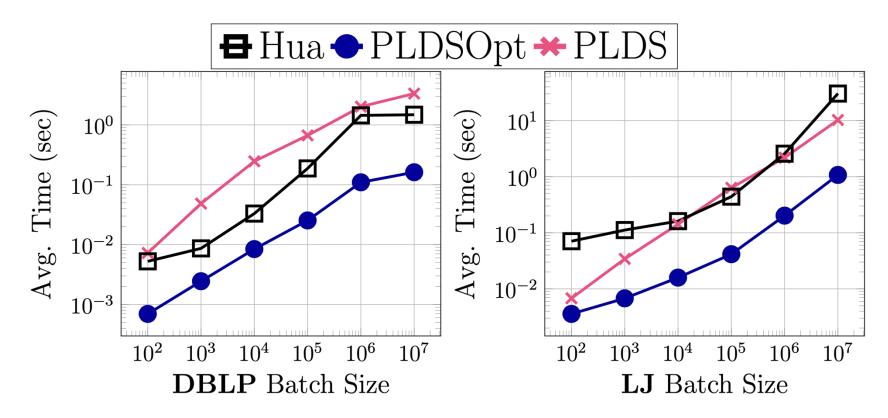
- Self-relative parallel speedups
 - PLDSOpt: 33x, PLDS: 26x, Hua: 3.6x
- PLDSOpt is faster than all of the other algorithms at 4 or more cores

Runtime vs. Batch Size

PLDS: our algorithm

PLDSOpt: optimized PLDS

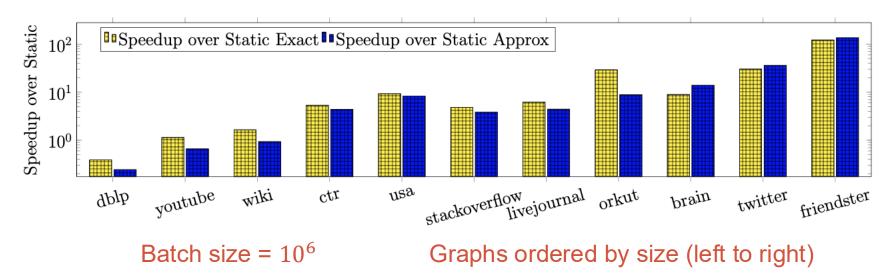
Hua et al.: parallel, exact, dynamic algorithm (Sun et al. does not have a batch method)



PLDSOpt achieves 2.5-115x speedup over Hua et al.

Runtime vs. Static Algorithms

- Parallel exact k-core decomposition [Dhulipala, Blelloch, Shun 2018]
- Parallel $(2 + \epsilon)$ -approximate k-core decomposition



- We achieve speedups for all but the smallest graphs
- Speedups of up to 122x for Twitter (1.2B edges) and Friendster (1.8B edges)

Conclusion

- Theoretically-efficient and practical batch-dynamic k-core decomposition algorithm
- Using our PLDS, we designed parallel batch-dynamic algorithms for several other problems:
 - Low out-degree orientation
 - Maximal matching
 - Clique counting
 - Graph coloring
- Source code available at <u>https://github.com/qqliu/batch-dynamic-kcore-decomposition</u>