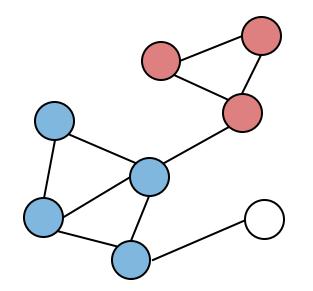


Parallel Algorithms for Density-Based and Structural Clustering

Julian Shun (MIT CSAIL)

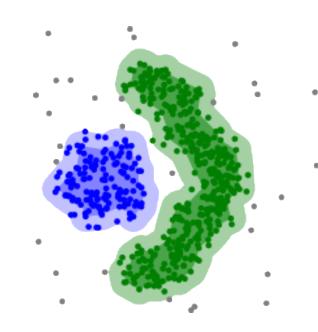


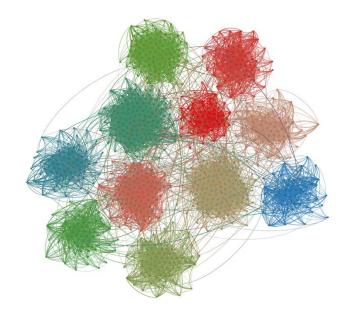
Yiqiu Wang, Yan Gu, and Julian Shun, *Theoretically-Efficient and Practical Parallel DBSCAN*, SIGMOD 2020.

Tom Tseng, Laxman Dhulipala, and Julian Shun, *Parallel Index-Based Structural Clustering and Its Approximation*, SIGMOD 2021.

Clustering

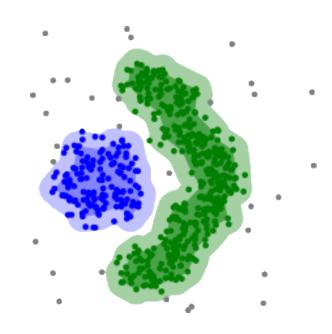
- Group "similar" objects together, and separate "dissimilar" objects
- Can be applied to spatial data and graph data
- Applications
 - Community detection, bioinformatics, parallel/distributed processing, visualization, image segmentation, anomaly detection, document analysis, machine learning, etc.

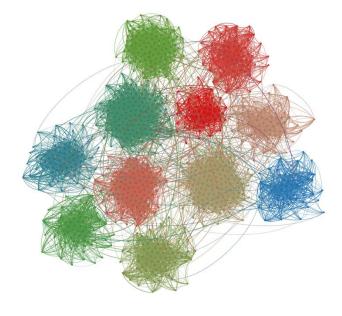




Clustering

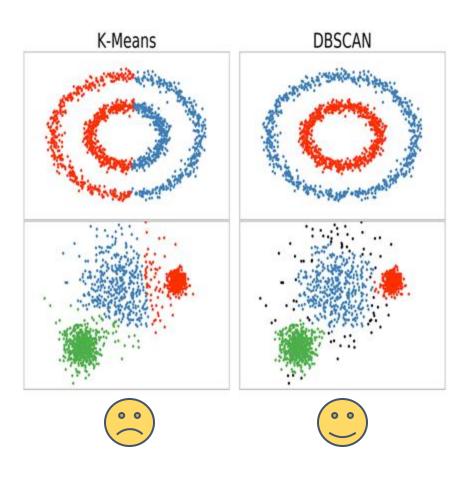
- Very well-studied topic
 - Hundreds of textbooks on this topic
- No universally accepted definition for cluster quality, many metrics have been proposed
- At least thousands of different clustering algorithms





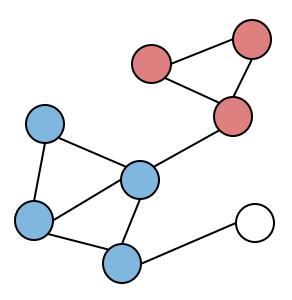
DBSCAN for Spatial Clustering

- DBSCAN (Density-Based Spatial Clustering of Applications with Noise)
 - Ester et al. [KDD'96]
- Areas of high density form clusters
- Does not require number of clusters beforehand
- Detects arbitrarily shaped clusters
- Robust to noise



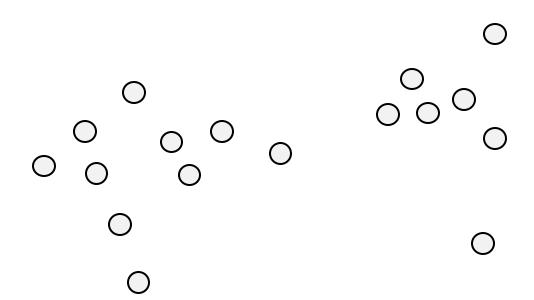
SCAN for Graph Clustering

- SCAN (Structural Clustering Algorithm for Networks)
 - Xu et al. [KDD'07]
- DBSCAN, but on graphs
- Similarity of vertices based on their number of shared neighbors
- "Dense" areas contain many vertices who have many similar neighbors
- Can identify clusters and outliers

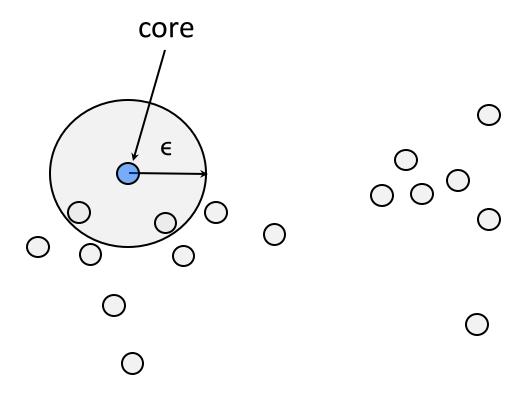


DBSCAN for Spatial Clustering

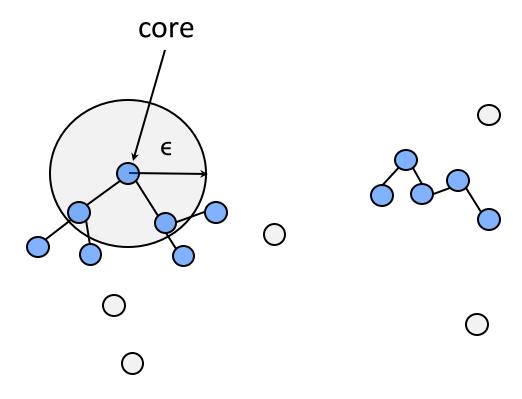
- Parameters
 - ∈
 - minPts



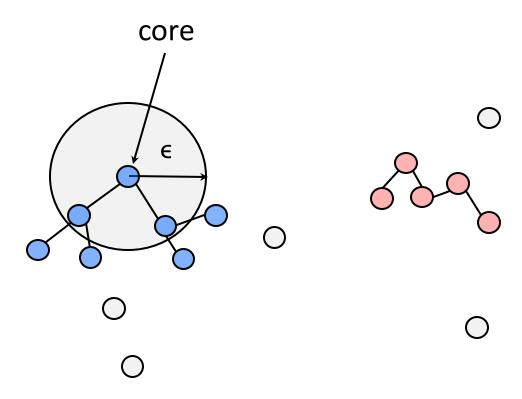
- Parameters
 - 6
 - minPts=3
- Core point
 - At least minPts points in ϵ -circle



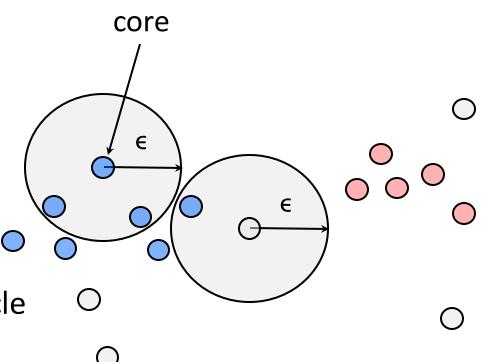
- Parameters
 - 6
 - minPts=3
- Core point
 - At least minPts points in ε-circle
 - Connected if in ϵ -circle



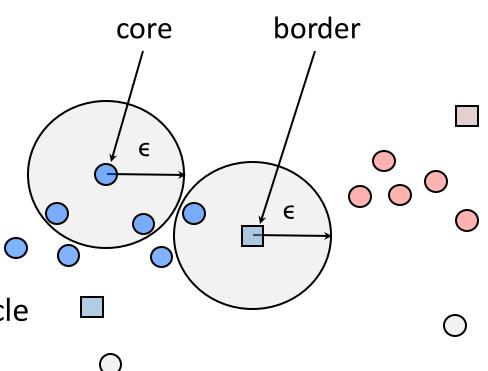
- Parameters
 - 6
 - minPts=3
- Core point
 - At least minPts points in ε-circle
 - Connected if in ∈-circle



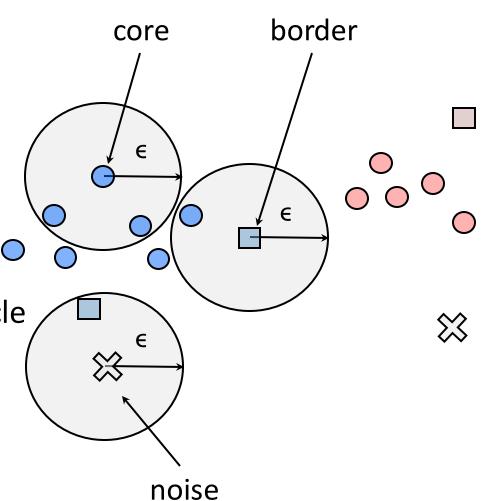
- Parameters
 - 6
 - minPts=3
- Core point
 - At least minPts points in ϵ -circle
 - Connected if in ∈-circle
- Border point
 - Fewer than minPts points in ϵ -circle
 - Contains a core point in ϵ -circle



- Parameters
 - 6
 - minPts=3
- Core point
 - At least minPts points in ϵ -circle
 - Connected if in ∈-circle
- Border point
 - Fewer than minPts points in ϵ -circle
 - Contains a core point in ϵ -circle



- Parameters
 - E
 - minPts=3
- Core point
 - At least minPts points in ϵ -circle
 - Connected if in ∈-circle
- Border point
 - Fewer than minPts points in ϵ -circle
 - Contains a core point in ϵ -circle
- Noise point



Related Work

Sequential

- de Berg et al., ISAAC'17 (Exact algorithms)
- Gan and Tao, SIGMOD'15 Best Paper Award (Approximate algorithm, hardness result)

Parallel

- Xu et al., HPDM'99 (PDBSCAN, distributed R-Tree)
- Patwary et al., SC'12 (PDSDBSCAN, parallel lock-based union-find)
- Gotz et al., MLHPC'15 (HPDBSCAN, data splitting and merging)
- Song et al., SIGMOD'18 (RP-DBSCAN, random partitioning, Map-Reduce)
- Many more

Challenges

- Lack of theoretical guarantees in parallel implementations
- High scalability but low work-efficiency

Our Contributions

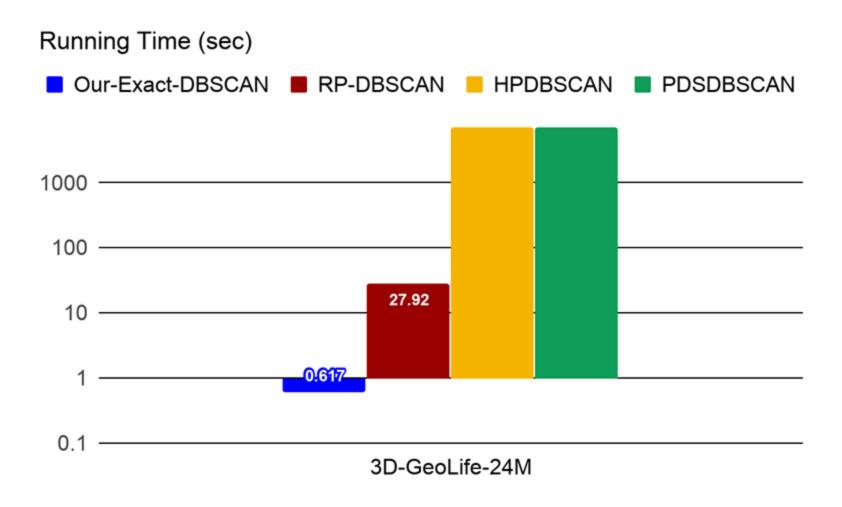
- Parallel algorithms with work matching best sequential bounds (work-efficient)
- Highly-optimized multicore implementations
- Comprehensive experimental study showing that our algorithms outperform state-of-the-art

All of Our Algorithms are Theoretically Efficient

2D Algorithms	Delaunay Triangulation	Unit-spherical Emptiness Checking
	O(n log n) expected work; O(log n) span with high probability	O(n log n) expected work; O(log² n) span with high probability
3D Algorithm	O((n log n) ^{4/3}) expected work; Polylogarithmic span with high probability	
Any Constant Dimension Algorithm	O(n ^{2-(2/([d/2]+1))+δ}) expected work; Polylogarithmic span with high probability	
Approximate Algorithm	O(n) expected work; O(log n) span with high probability	

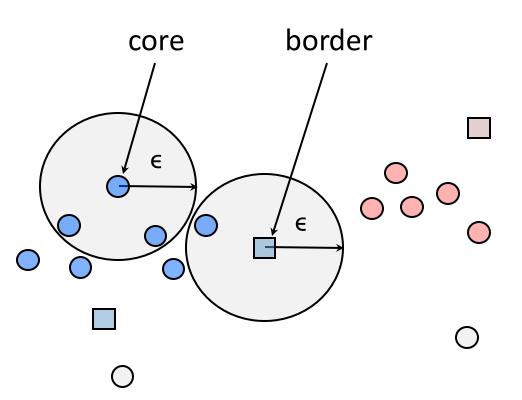
 Our work bounds match the best sequential bounds by de Berg et al. and Gan and Tao (work-efficient)

Experimental Results on 36 cores

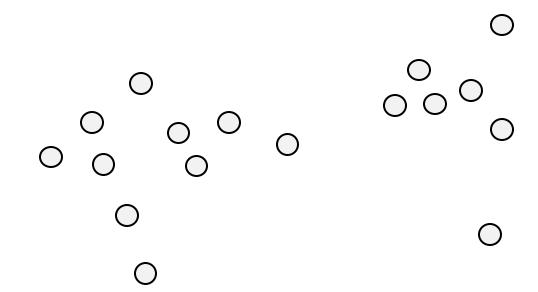


Naive Parallel Algorithm

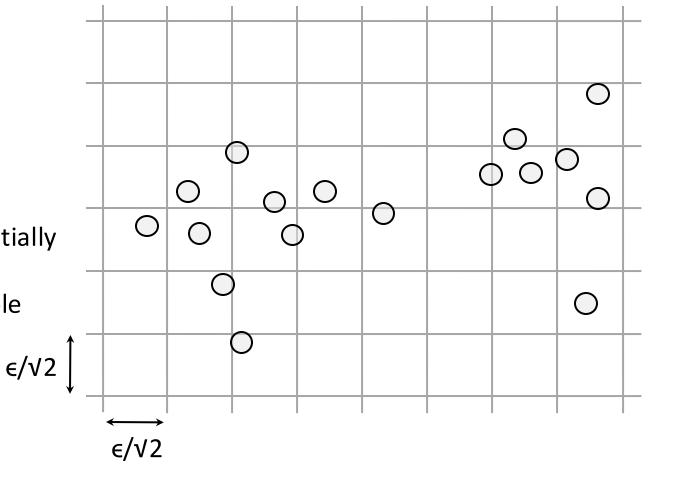
- Points issue range queries in parallel
- Parallel connected components
- Quadratic work in the worst case
 - Worst-case linear work per point of for range query



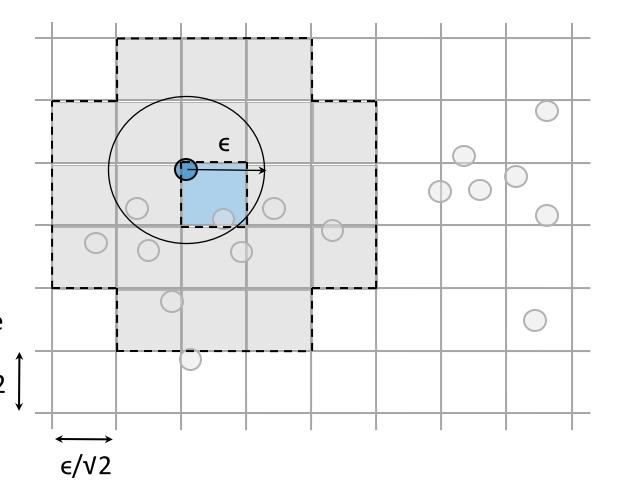
- 1. Construct grid cells
- 2. Mark core points
- 3. Cell graph
- 4. Cluster border points



- 1. Construct grid cells
- 2. Mark core points
- 3. Cell graph
- 4. Cluster border points
- First used by de Berg et al. sequentially
- Sort based on cell ID
- Insert points into parallel hash table



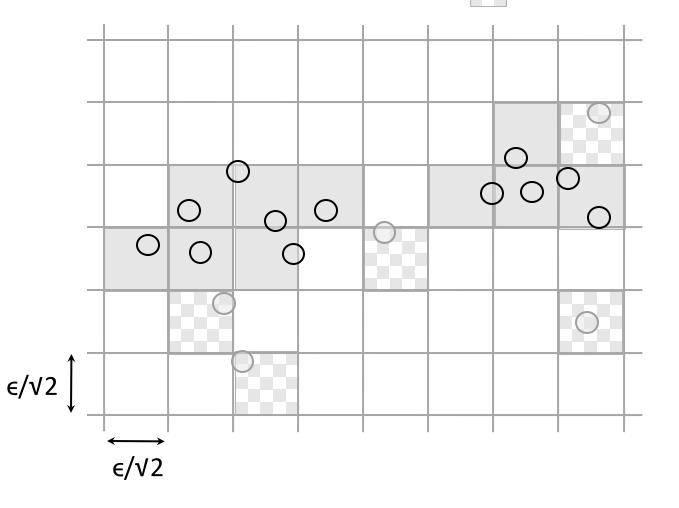
- 1. Construct grid cells
- 2. Mark core points
- 3. Cell graph
- 4. Cluster border points
- Loop through points in parallel
- Check 21-cell neighborhood
- Cell with ≥ minPts points, all points are core



Core pointsNon-core pointsCell with core pointsCell without core points

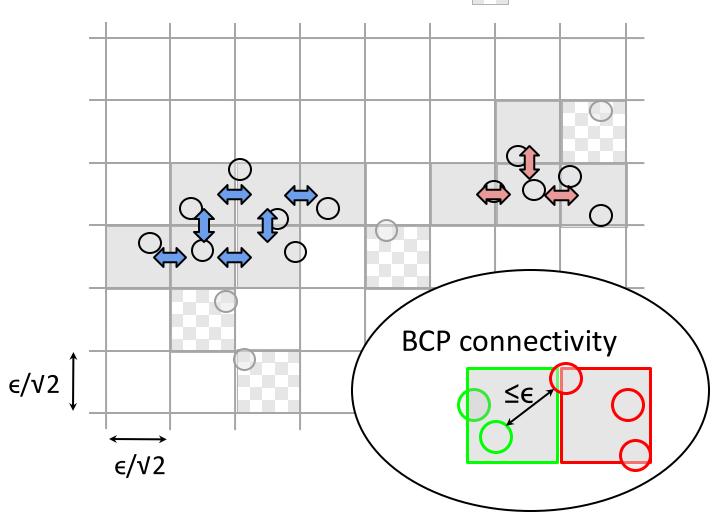
- Construct grid cells
- 2. Mark core points
- 3. Cell graph
- 4. Cluster border points

"Core cells" and "non-core cells"



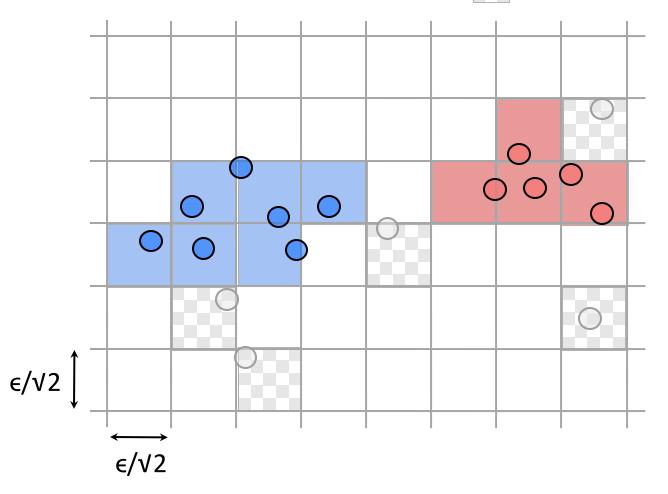
- Core points
- Non-core points
- Cell with core points
 - Cell without core points

- Construct grid cells
- 2. Mark core points
- 3. Cell graph
- 4. Cluster border points
- Bichromatic closest pair (BCP) connectivity
 - Finds closest pair of points between two cells
 - Connect cells if distance $\leq \epsilon$
 - Used by Gan-Tao sequentially
- Run connected components on core cells to form clusters for core points



- Core pointsNon-core pointsCell with core points
 - Cell without core points

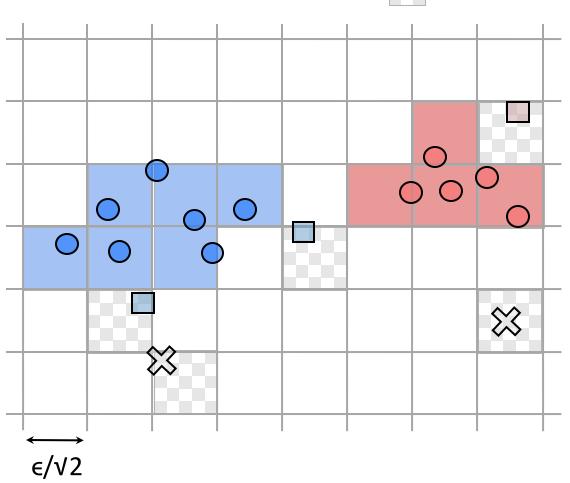
- Construct grid cells
- 2. Mark core points
- 3. Cell graph
- 4. Cluster border points



€/√2

Core pointsSome pointsCell with core pointsCell without core points

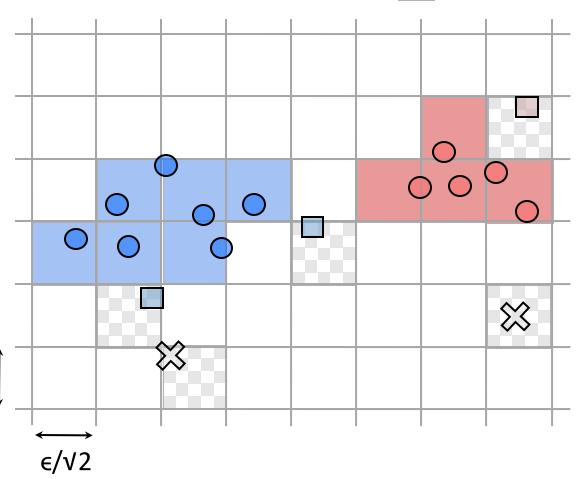
- Construct grid cells
- 2. Mark core points
- 3. Cell graph
- 4. Cluster border points
- Differences for higher-dimensional exact and approximate algorithms
 - Grid size is ϵ/Vd instead of $\epsilon/V2$
 - How BCP queries are computed



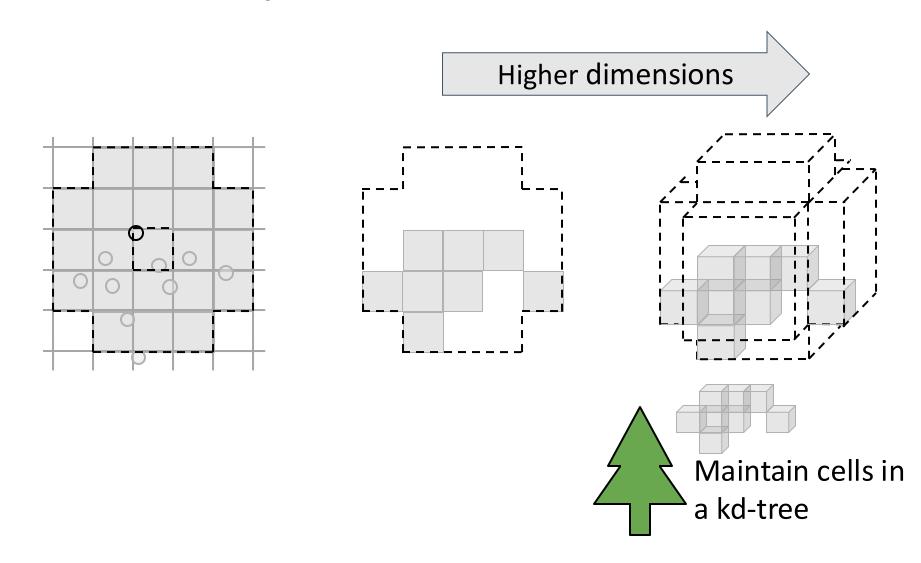
€/√2

Core pointsSome pointsCell with core pointsCell without core points

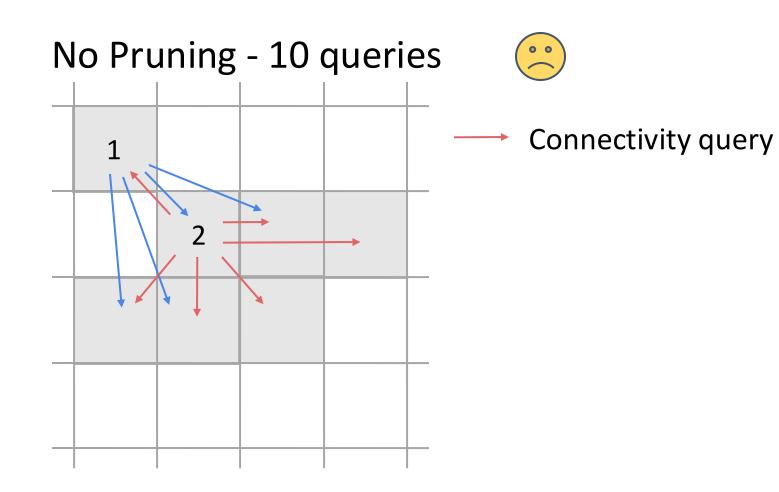
- Construct grid cells
- 2. Mark core points
- 3. Cell graph
- 4. Cluster border points
- Our work bound matches the sequential bounds of de Berg et al. and Gan and Tao
 - O(n log n) for 2D, subquadratic for d > 2, O(n) for approximate
 - BCP queries dominate work
- Can implement all operations in polylogarithmic span
 - Parallel primitives: hashing, prefix sums, semisorting, merging, pointer jumping, Delaunay



Optimization - Spatial Tree

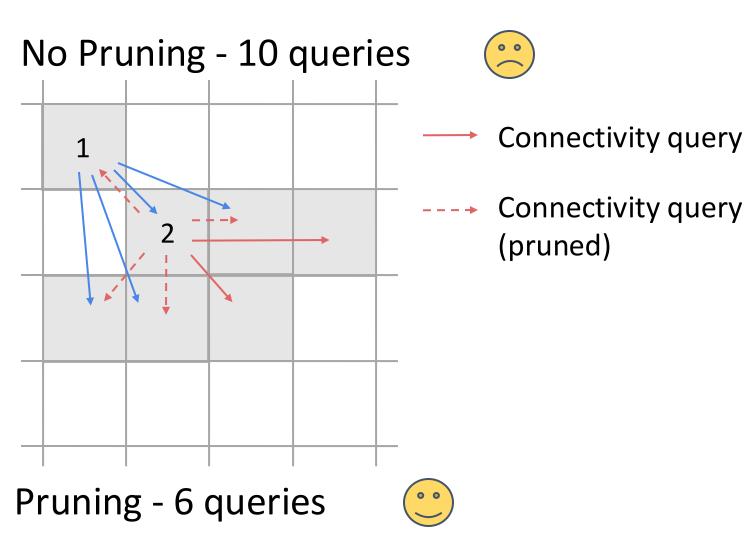


Optimization - Parallel Pruning of BCP Queries



Optimization - Parallel Pruning of BCP Queries

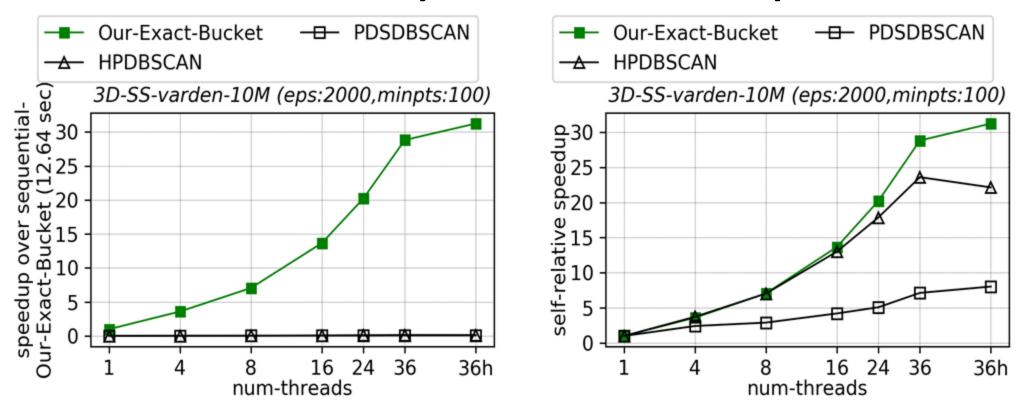
- Parallel union-find keeps connectivity on-the-fly
 - First used by Gan and Tao sequentially
- Prunes query if already connected
- Prunes query if repeated
- Order in which cells are processed affects pruning quality
 - Bucket cells based on #points and process each bucket in parallel



Experimental Setup

- AWS c5.18x Large
 - 2 × Intel Xeon Platinum 8124M (3.00GHz) CPUs
 - 36 cores, 2-way hyperthreading
 - 144 GiB RAM
- AWS r5.24x Large (only used for larger datasets)
 - 2 × Intel Xeon Platinum 8175M (2.50 GHz) CPUs
 - 48 cores, 2-way hyperthreading
 - 768 GiB RAM

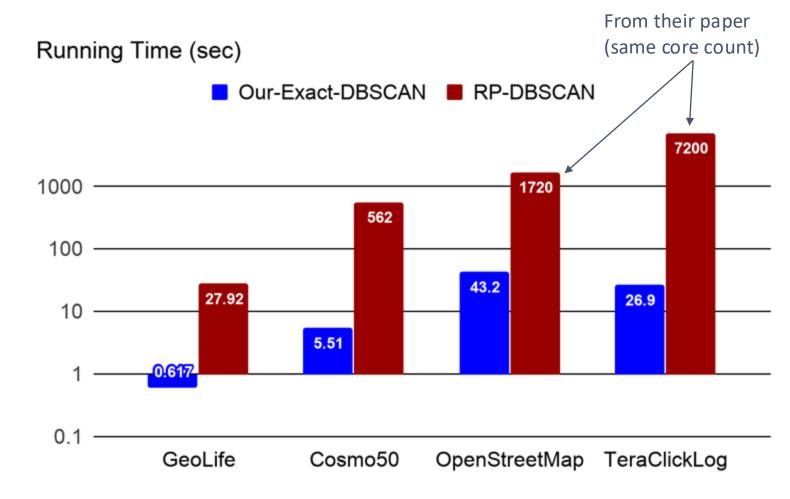
Good Work-Efficiency and Scalability



16-6102x faster than HPDBSCAN and PDSDBSCAN across all datasets and parameter settings

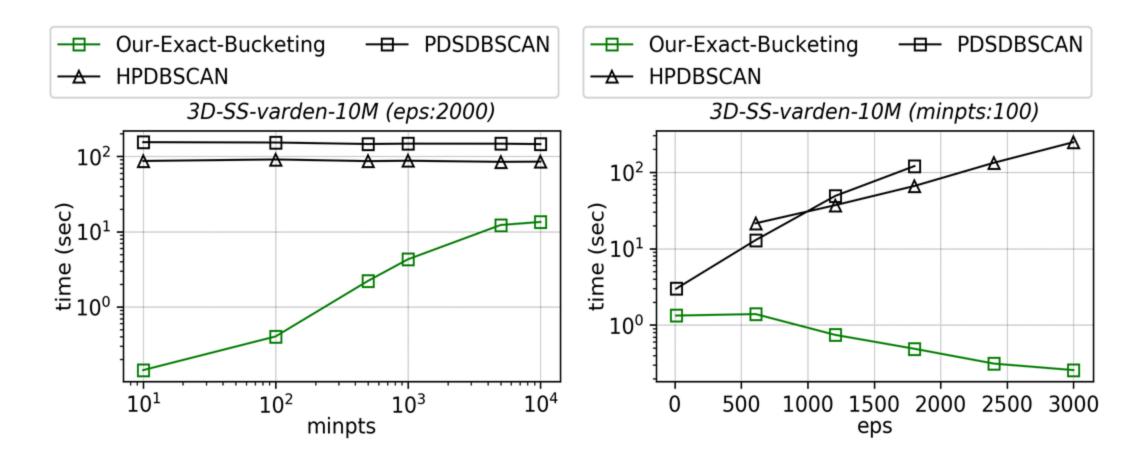
Good Speedup over State-of-art Parallel Implementation

	#Data Points	Dimension
GeoLife	24.9 M	3
Cosmo50	321 M	3
OpenStreetMap	2770 M	2
TeraClickLog	4373 M	13



18-577x faster than RP-DBSCAN

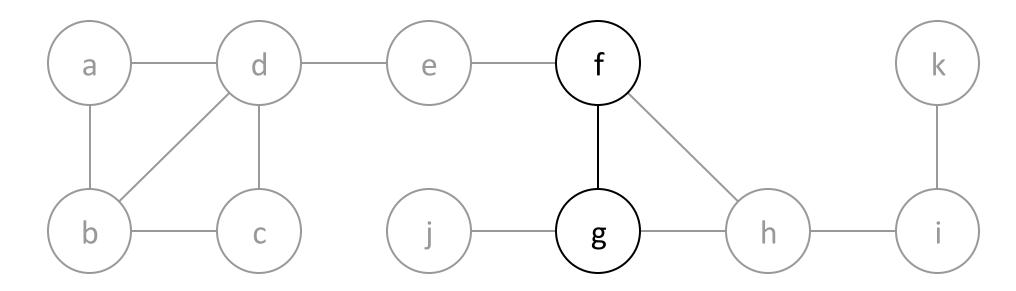
Varying Parameters



SCAN for Graph Clustering

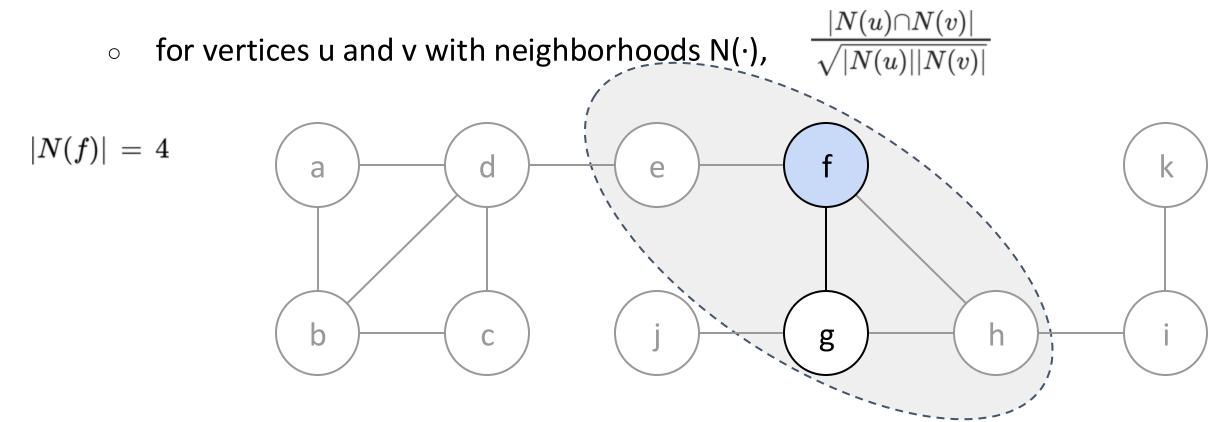
SCAN Definition

- A pair of adjacent vertices is similar if they share many neighbors
- Original SCAN algorithm uses cosine similarity
 - \circ for vertices u and v with neighborhoods N(·), $\sqrt{\frac{|N(u)| |N(v)|}{\sqrt{|N(u)||N(v)|}}}$



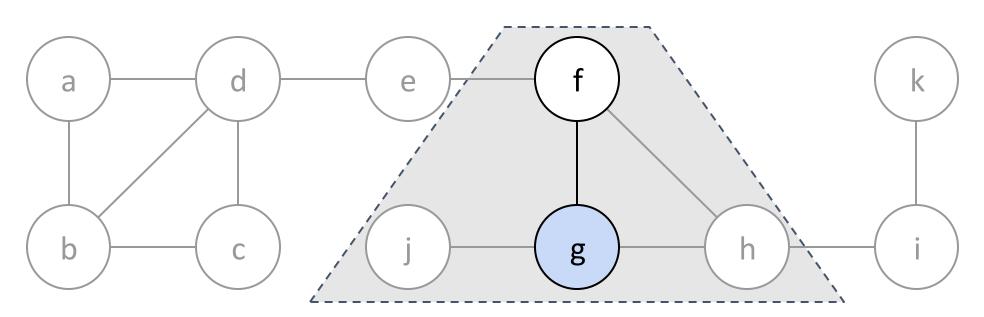
SCAN Definition

- A pair of adjacent vertices is similar if they share many neighbors
- Original SCAN algorithm uses cosine similarity

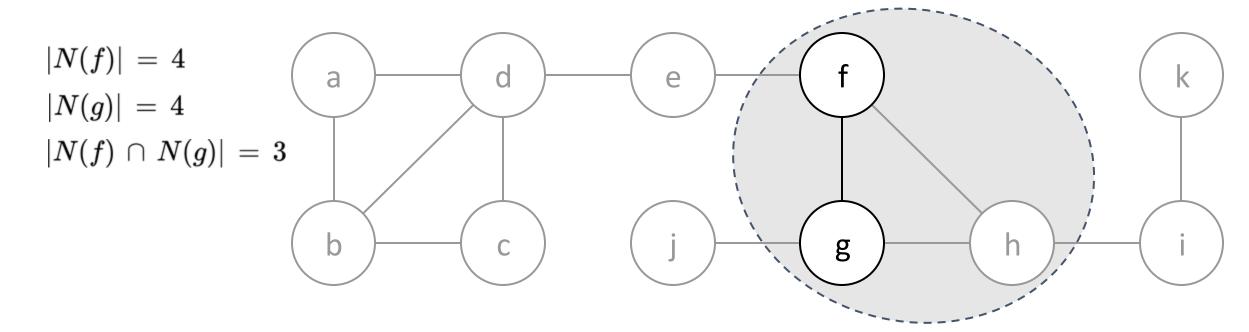


- A pair of adjacent vertices is similar if they share many neighbors
- Original SCAN algorithm uses cosine similarity
 - o for vertices u and v with neighborhoods N(·), $\frac{|N(u)| |N(v)|}{\sqrt{|N(u)||N(v)|}}$

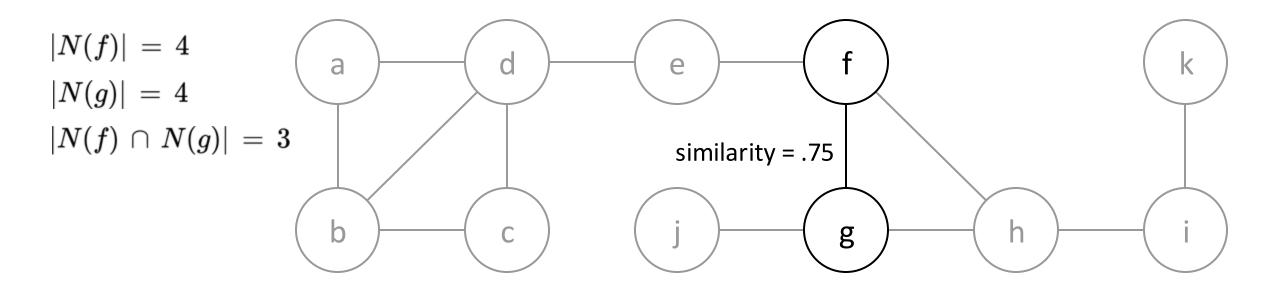
$$|N(f)| = 4$$
 $|N(g)| = 4$



- A pair of adjacent vertices is similar if they share many neighbors
- Original SCAN algorithm uses cosine similarity
 - \circ for vertices u and v with neighborhoods N(·), $\frac{|N(u)\cap N(v)|}{\sqrt{|N(u)||N(v)|}}$



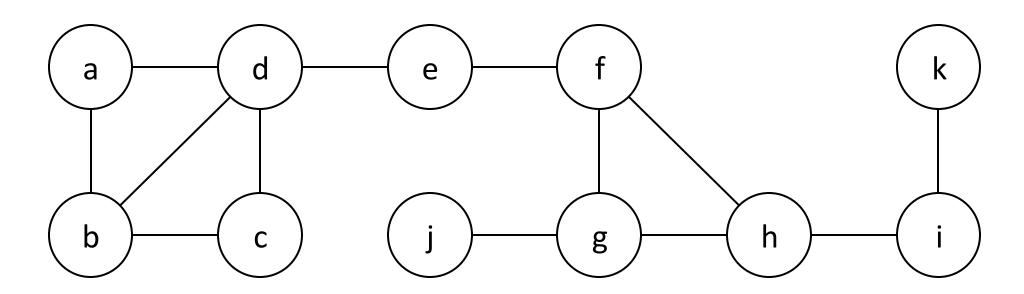
- A pair of adjacent vertices is similar if they share many neighbors
- Original SCAN algorithm uses cosine similarity
 - o for vertices u and v with neighborhoods N(·), $\frac{|N(u)| |N(v)|}{\sqrt{|N(u)||N(v)|}}$



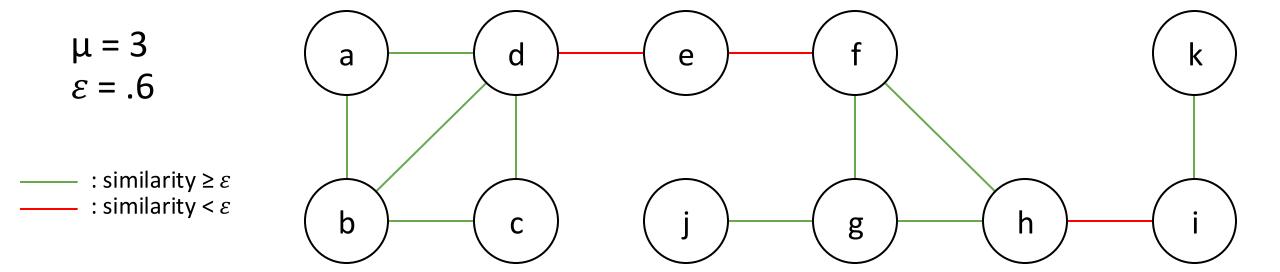
- A pair of adjacent vertices is similar if they share many neighbors
- Original SCAN algorithm uses cosine similarity
 - \circ for vertices u and v with neighborhoods N(·), $\frac{|N(u)| |N(v)|}{\sqrt{|N(u)||N(v)|}}$
- Other similarity functions we consider:
 - Jaccard similarity
 - Weighted cosine similarity

- User-selected parameters: μ , ε
- Vertex is a **core** vertex if it has at least μ neighbors that are ε -similar

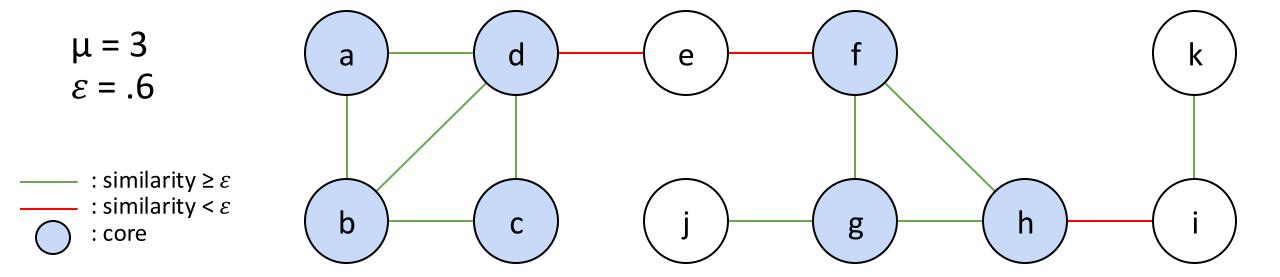
$$\mu = 3$$
 $\varepsilon = .6$



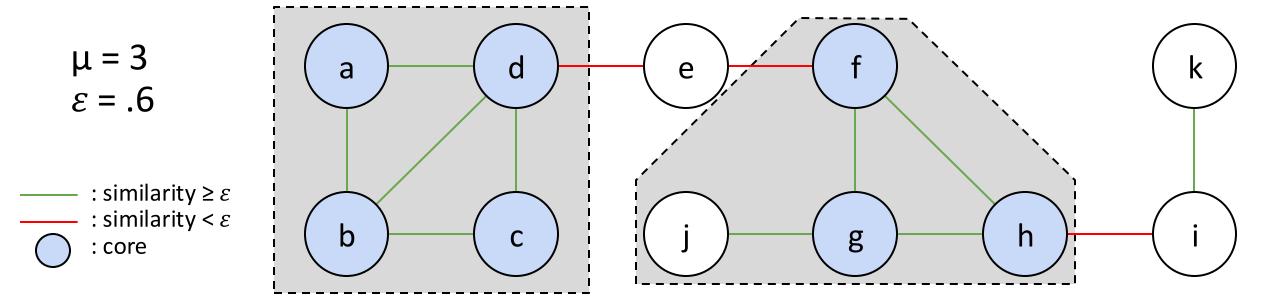
- User-selected parameters: μ , ε
- Vertex is a **core** vertex if it has at least μ neighbors that are ε -similar



- User-selected parameters: μ , ε
- Vertex is a **core** vertex if it has at least μ neighbors that are ε -similar



- Clusters: connected component of core vertices along with any other ε -similar neighbors (**border** vertices)
- Outliers are vertices not belonging to any cluster



SCAN Complexity

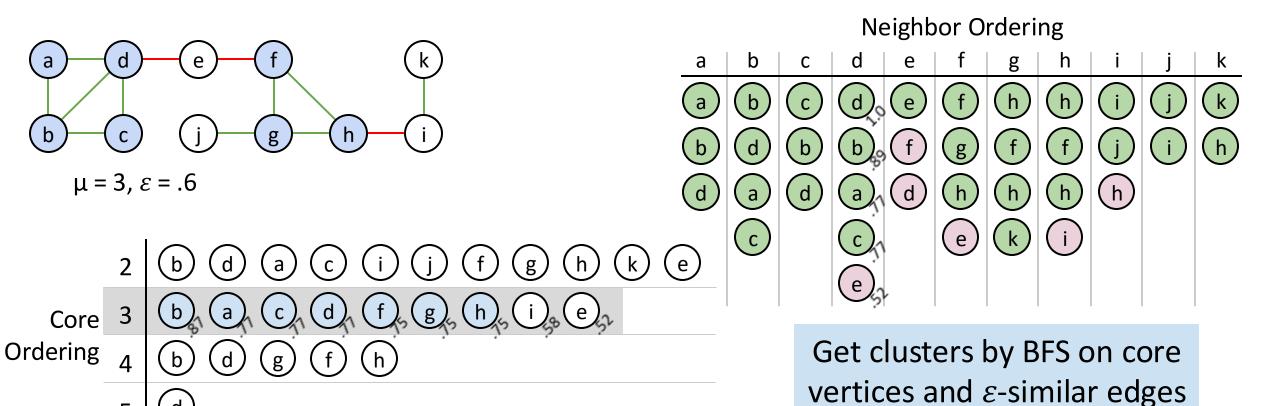
- Work of SCAN: $O(m\alpha) \le O(m^{1.5})$
 - \circ Arboricity (α): a measure of graph sparsity
 - \circ Computing similarities is the expensive part: O(m α)
 - Finding clusters from similarities: O(m)
- SCAN is especially costly for dense graphs
- Furthermore, users often have to try many different parameters to obtain good clusters

GS-Index: precompute index to test parameters quickly

- SCAN variant GS-Index constructs index from which querying for clustering under arbitrary μ and ε is fast (Wen et al., VLDB 2017)
- Maintain neighbor ordering to quickly find similar neighbors
 - Vertices' neighbor lists are sorted in decreasing order by similarity
- Maintain core ordering to quickly find core vertices
 - \circ For each μ , store list of vertices sorted in decreasing order by the maximum value of ε such that the vertex is a core vertex

GS-Index: precompute index to test parameters quickly

- Neighbor ordering: vertices' neighbor lists sorted by similarity
- Core ordering: For each μ , vertices sorted by max ε at which vertex is a core



extracted from index

GS-Index gives fast queries but is still sequential

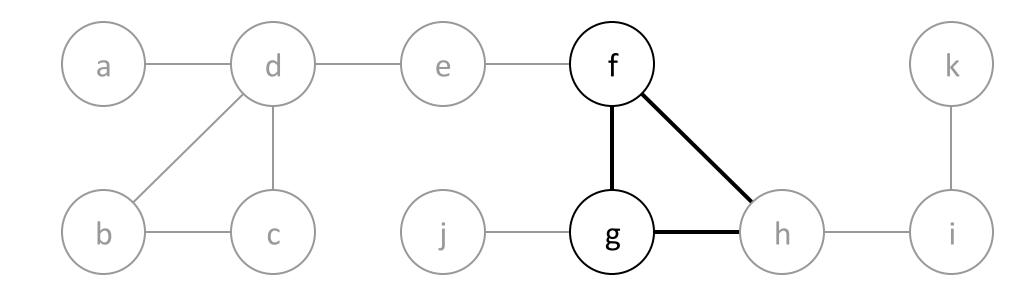
- Work to compute index: $O((\alpha + \log n)m)$
 - Cost for computing similarities and sorting
- Work to query for clusters: linear in the total sizes of clusters
 - \circ No work done for non- ε -similar edges and unclustered vertices
- Queries are fast, but computing the index sequentially is slow

Our contributions

- Parallel index-based SCAN algorithm
 - Provably work-efficient with logarithmic span
- Approximate similarity computation via locality-sensitive hashing for even greater speedups
- Practical, optimized multicore implementations that empirically outperform state-of-the-art SCAN algorithms

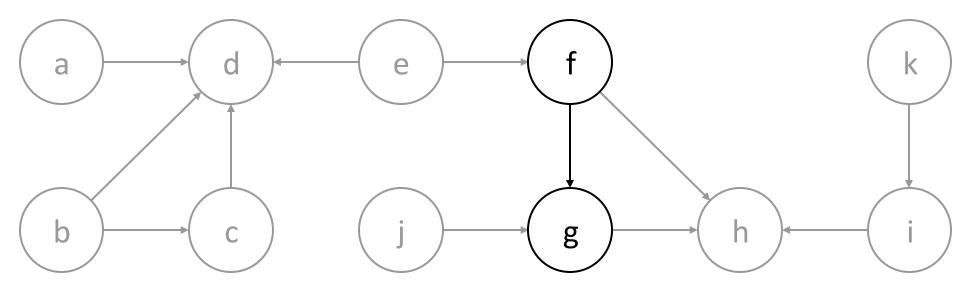
Computing similarities

- Finding shared neighbors is counting triangles
 - \circ This can be done in O(α m) work and O(log n) span with high probability using parallel hash tables
- Important to optimize similarity computation since it's so costly



Computing similarities

- Count each triangle once instead of three times by directing the graph and counting directed triangles (Latapy 2008)
 - o Direct each edge from lower-degree to higher-degree endpoint
- For better cache locality, instead of using parallel hash tables, intersect sorted neighbor lists with parallel merge (Shun and Tangwongsan 2015)



Computing neighbor and core orderings

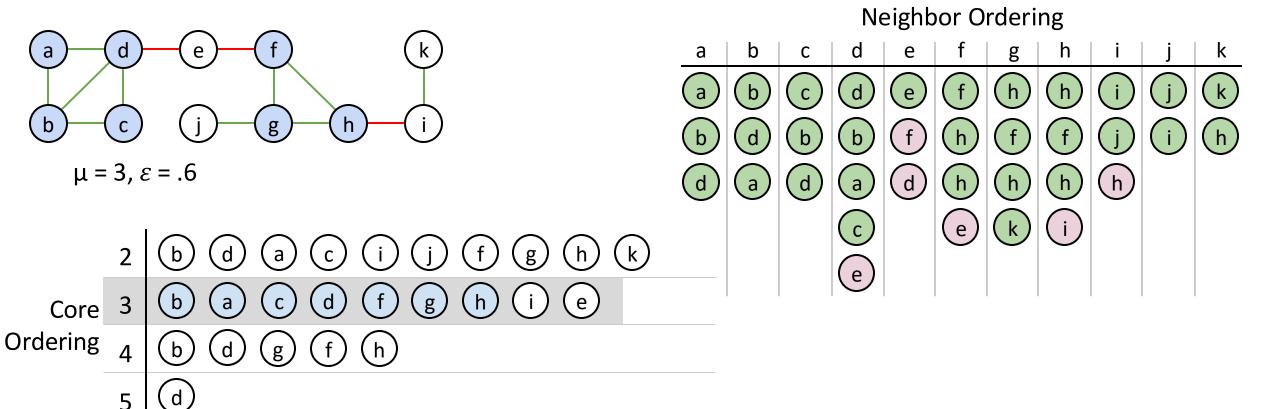
- Use parallel comparison sort
- Additional observation: can integer sort on unweighted graphs to get better work bounds
 - Transform similarities monotonically into integers

$$\frac{|N(u)\cap N(v)|}{\sqrt{|N(u)||N(v)|}} \rightarrow \left| \left(\frac{|N(u)\cap N(v)|}{\sqrt{|N(u)||N(v)|}} \right)^2 n^4 \right|$$

- Reduces the log n term in the $O((\alpha + \log n)m)$ work bound
 - $O(\alpha m)$ work with $O(n^{\beta})$ span, or
 - $O((\alpha + \log \log n)m)$ work and $O(\log n)$ span

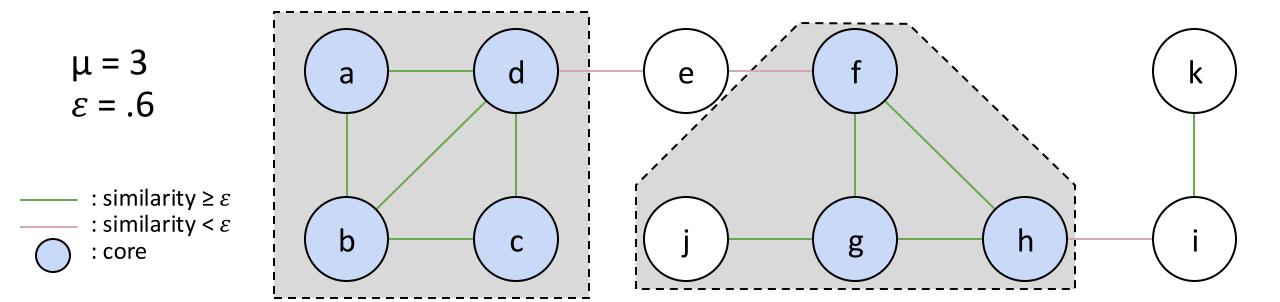
Querying: doubling search on index

• Doubling search to find core vertices and ε -similar edges from index



Querying: finding clusters

- Parallel connectivity on core vertices and ε -similar edges
- In theory, we use a linear work and O(log n) span connected components algorithm
- In practice, we use a parallel union-find data structure



Our Work: Approximating similarities

- Similarity computation in index construction is still the computational bottleneck, especially on dense graphs
- Locality-sensitive hashing (LSH) approximates similarity between vertices
 - SimHash for cosine similarity
 - MinHash for Jaccard similarity
- LSH sample size k trades accuracy vs. running time

LSH increases speed on dense graphs

- For sample size k, further reduce the $O((\alpha + \log n)m)$ work bound to
 - \circ O(km) work with O(n^{β}) span, or
 - O((k + log log n)m) work and O(log n) span

LSH still maintains guarantees on resulting clusters

• We prove that if the number of samples k is sufficiently large, we correctly "classify" all edges as above or below ε in similarity, except inside a small interval around ε

LSH heuristic: only LSH on high-degree vertices

- If neighborhoods are small, better to just compute exact similarities
- Solution: use LSH on pairs of high-degree vertices, and use triangle counting elsewhere

Experimental Setup

- AWS machine
 - 48 cores, two-way hyperthreading (max 96 hyper-threads)
 - 192 GiB of RAM

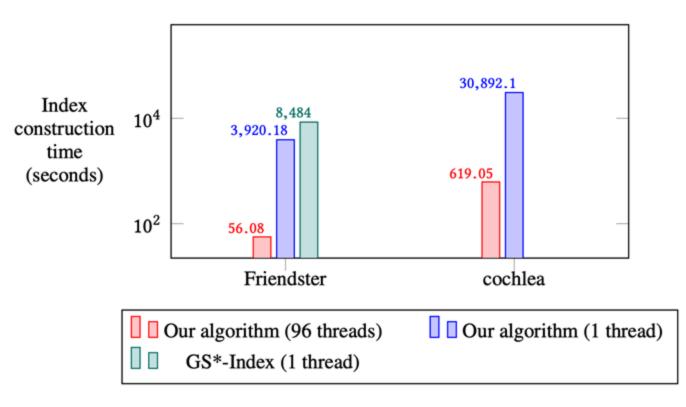
Comparison against state-of-the-art

- ppSCAN: fastest parallel SCAN algorithm (Che et al., ICPP 2018)
- GS-Index: original (sequential) index-based SCAN algorithm (Wen et al., VLDB 2017)

Exact index construction: 50–151× speedup vs. GS-Index

Friendster graph: large social network (65M vertices, 1.8B edges)

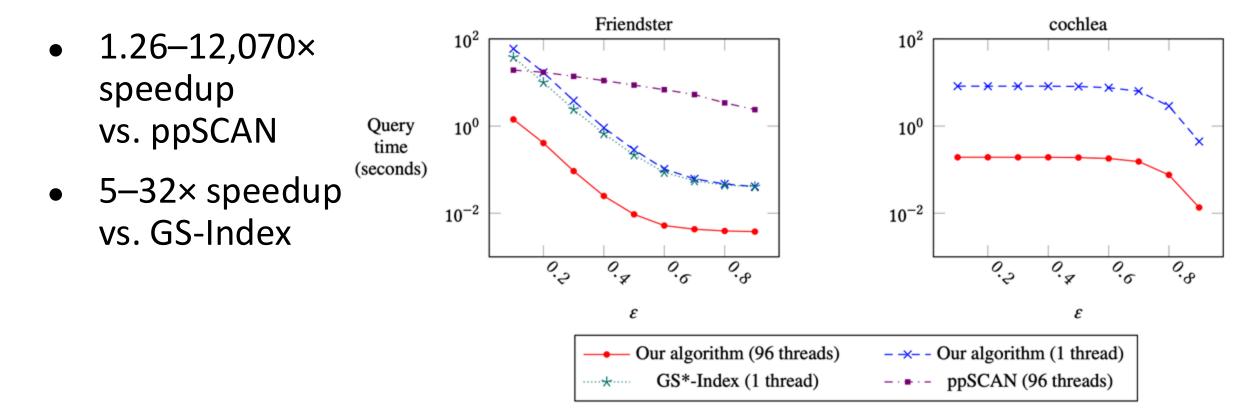
Cochlea graph: dense, weighted biological graph (26K vertices, 282M edges)



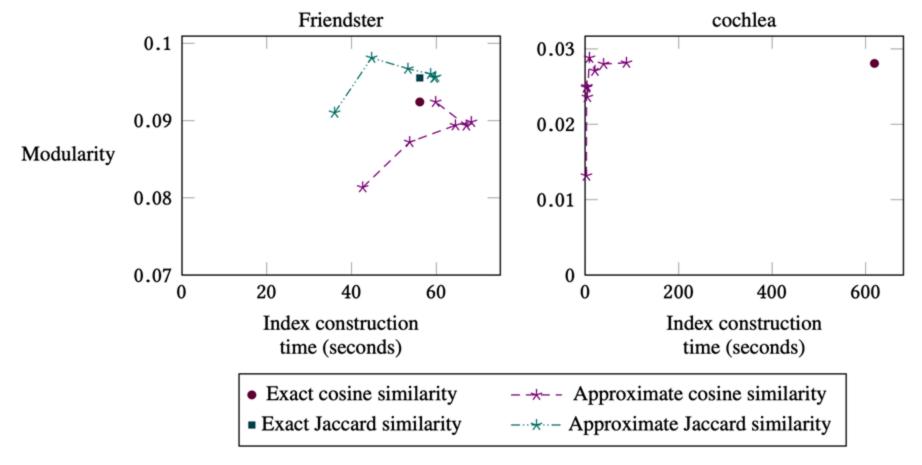
- Even sequentially, 1.4–2.2× speedup over GS-Index
- 23–70× self-relative parallel speedup

Query time: always faster than ppSCAN

Fix μ =5 and vary ε



LSH gives faster index construction with similar cluster quality



 Modularity: popular and standard clustering metric based on how many edges are within clusters

Conclusion

- Theoretically-efficient and practical parallel algorithms for densitybased spatial clustering (DBSCAN) and structural graph clustering (SCAN)
- Code publicly available
 - DBSCAN: https://sites.google.com/view/yiqiuwang/dbscan
 - SCAN: https://github.com/ParAlg/gbbs/tree/master/benchmarks/SCAN/IndexBased