A Functional Approach to External Graph Algorithms

Paper Presentation – 6.5060

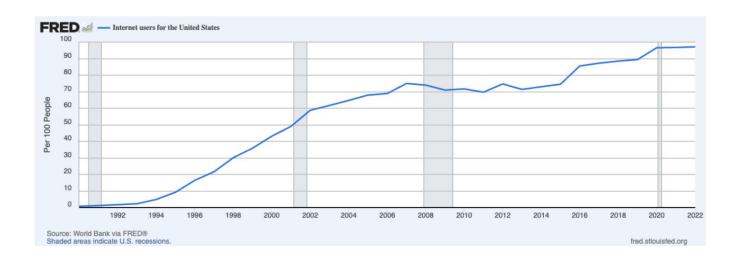
A Functional Approach to External Graph Algorithms

James Abello, Adam Buchsbaum, Jefferey Westbrook

- Researchers at AT&T

Published in the March 2002 edition of Algorithmica

Published as an article in 1998 and a conference paper in 1999



Motivation

- Data often exceeds main memory limits
- External memory is orders of magnitude slower
- Classical algorithms don't scale well in I/O bound regimes
- Graph algorithms exhibit particularly poor data locality

Computation Model

I/O Model of Complexity (Aggarwal and Vitter)

- N = Number of items
- M = Number of items that can fit into main memory
- B = Number of items per disk block

General Goal:

Replace N times bounds with N/B

Replace $log_2(n)$ time bounds with $log_{M/B}(n)$ time bounds

Primitives

- $sort(N) = \Theta((N/B) \log_{M/B}(N/B))$
- $\operatorname{scan}(N) = \lceil N/B \rceil$

Previous Approaches

PRAM Simulation

A PRAM algorithm using N processors and N Space to solve a problem of size N in time t can be simulated in external memory using one processor in $O(t \cdot sort(N))$ I/O operations

Represent memory and processor state in external memory

- Not practical
- Used to derive existence of external memory algorithms

Previous Approaches

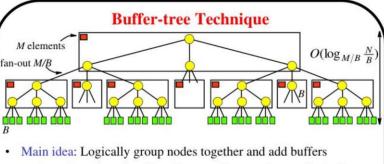
Buffering Data Structures

Create external variants of classic data structures to amortize I/O operations

Example: Buffer Trees

I/O-Algorithms. Lars Arge Spring 2012 February 14, 2012

 Graph algorithms often require more complicated interfaces I/O-algorithms



- Insertions done in a "lazy" way elements inserted in buffers
- When a buffer runs full elements are pushed one level down
- Buffer-emptying in O(M/B) I/Os
 - ⇒ every *block* touched constant number of times on each level
 - \Rightarrow inserting N elements (N/B blocks) costs $O(\frac{N}{B}\log_{M/B}\frac{N}{B})$ I/Os

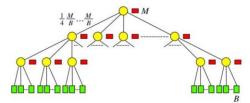
Lars Arge

29

I/O-algorithms

Basic Buffer-tree

- · Definition:
 - B-tree with branching parameter $\frac{M}{B}$ and leaf parameter B
 - Size M buffer in each internal node



- Updates:
 - Add time-stamp to insert/delete element
 - Collect B elements in memory before inserting in root buffer
 - Perform buffer-emptying when buffer runs full

Lars Arge 3

Functional Approach

- Divide-and-conquer paradigm based on transformations that can be expressed functionally
 - Each step performs computation without modifying the input
 - "No side effects"

Advantages:

- Simplicity
- Checkpointing
- Competitive Performance

Basic Functions

Selection, Relabeling, Contraction, Deletion

Selection

Return the kth biggest element from a list of items

- 1. Partition *I* into cM-element subsets, for some 0 < c < 1.
- 2. Determine the median of each subset in main memory. Let *S* be the set of medians of the subsets.
- 3. $m \leftarrow \text{Select}(S, \lceil S/2 \rceil)$.
- 4. Let I_1 , I_2 , I_3 be the sets of elements less than, equal to, and greater than m, respectively.
- 5. If $|I_1| \ge k$, then return Select (I_1, k) .
- 6. Else if $|I_1| + |I_2| \ge k$, then return m.
- 7. Else return Select(I_3 , $k |I_1| |I_2|$).

I/O Complexity: O(scan(|I|))

Relabeling

RL(F, I):

- A rooted forest F expressed as a set of directed edges (p(v), v)
- An edge set I

Output:

• A new edge set where each endpoint is replaced with its parent, if it exists (remove self-loops)

Relabeling

- 1. Sort F by source vertex, v.
- 2. Sort *I* by second component.
- 3. Process *F* and *I* in tandem.
 - (a) Let $\{s, h\} \in I$ be the current edge to be relabeled.
 - (b) Scan F starting from the current edge until finding (p(v), v) such that $v \ge h$.
 - (c) If v = h, then add $\{s, p(v)\}$ to I''; otherwise, add $\{s, h\}$ to I''.
- 4. Repeat steps 2 and 3, relabeling first components of edges in I'' to construct I'.

I/O Complexity: O(sort(|I|) + sort(|F|))

Contraction

Merge set of vertices into single super-vertex Concrete Application: Contract subcomponents into single vertex

- 1. For each $C_i = \{\{u_1, v_1\}, \ldots\}$:
 - (a) $R_i \leftarrow \emptyset$.
 - (b) Pick u_1 to be the canonical vertex.
 - (c) For each $\{x, y\} \in C_i$, add (u_1, x) and (u_1, y) to relabeling R_i .
- 2. Apply relabeling $\bigcup_i R_i$ to I, yielding the contracted edge list I'.

I/O Complexity: $O(sort(|I|) + sort(\sum_{i} |C_{i}|))$

Note: Preserves Connectivity

Applications

Connected Components, Minimum Spanning Forests, Bottleneck Minimum Spanning Forest, Maximal Matching

Connected Components

Input: G = (V,E)

Output: A forest of rooted stars corresponding to connected components of G

- 1. Let E_1 be any half of the edges of G; let $G_1 = (V, E_1)$.
- 2. Compute $CC(G_1)$ recursively.
- 3. Let $G' = G/CC(G_1)$.
- 4. Compute CC(G') recursively.
- 5. $CC(G) = CC(G') \cup RL(CC(G'), CC(G_1)).$

I/O Complexity: $O(sort(E) + (E/V)sort(V) log_2(V/M))$

General Formula

- 1. $G_1 \leftarrow S(G)$;
- 2. $G_2 \leftarrow T_1(G, f_{\mathcal{P}}(G_1));$
- 3. $f_{\mathcal{P}}(G) = T_2(G, G_1, G_2, f_{\mathcal{P}}(G_1), f_{\mathcal{P}}(G_2)).$

G1 is a subgraph of G

G2 applies some transformation to combine the recursive solution (f_p) and G

The full solution applies a transformation to the recursive solutions and intermediaries

Full Results

Table 1. I/O bounds for our functional external algorithms.

	Deterministic	Randomized	
Problem	I/O bound	I/O Bound	With probability
Connected components	$O(sort(E) + \frac{E}{V} sort(V) \log_2 \frac{V}{M})$	O(sort(E))	$1 - e^{\Omega(E)}$
MSFs	$O(sort(E) + \frac{E}{V} sort(V) \log_2 \frac{V}{M})$	O(sort(E))	$1 - e^{\Omega(E)}$
BMSFs	$O(sort(E) + \frac{E}{V} sort(V) \log_2 \frac{V}{M})$	O(sort(E))	$1-e^{\Omega(E)}$
Maximal matchings	$O(\frac{E}{V}sort(V)\log_2\frac{V}{M})$	O(sort(E))	$1-\varepsilon$ for any fixed ε
Maximal independent sets		O(sort(E))	$1 - \varepsilon$ for any fixed ε

Randomized Algorithms

- Externalize linear-time MSF algorithm (Karger et al.) to obtain randomized algorithms for CC, MSF, and BMSF
 - Luby's Algorithm => Maximal Independent Sets
 - Yang et al. => Maximal Matching
- Advantages:
 - Improved run times w.h.p
 - Simplicity

Semi-External Memory

Conditions:

- $V \leq M$
- E > M

Example: AT&T telephone call network

- V = 250 million
- E = 100 billion per year

Keeping vertex data structures in memory can improve performance

Semi-External Memory – CC & MSF

- Use disjoint set union to compute forest of rooted stars with a single scan
 - Kept in memory => No I/O
 - I/O Complexity: O(scan(E))
- For MSF, sort edges first or use dynamic trees
 - Note: Dynamic trees increase internal runtime but further improves external I/O bound

Future Directions

- Incremental and dynamic algorithms for external graph problems
- Easier connectivity testing to improve BMSF algorithm
- Functional contraction of arbitrary edge sets
- Faster BMSF algorithm (than MSF) in external setting

Discussion Questions

Is this framework / model of computation applicable to SSD?

Where do we see the impacts of functional external graph algorithms in research today?

Do functional external graph algorithms have any practical applicability?