Distributed Graph-Parallel Computation on Natural Graphs

PowerGraph:

Presented By Louise He

Background

USENIX OSDI (Operating Systems Design and Implementation)

ARTICLE

PowerGraph: distributed graph-parallel computation on natural graphs

Authors:

Joseph E. Gonzalez,
Yucheng Low,
Haijie Gu,
Danny Bickson,
Carlos Guestrin
Authors

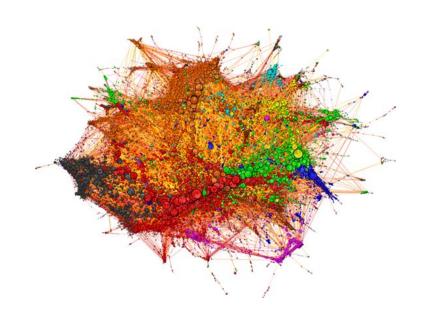
Info & Claims

OSDI'12: Proceedings of the 10th USENIX conference on Operating Systems Design and Implementation • Pages 17 - 30

Published: 08 October 2012 Publication History

Problem Trying to Solve

Large-scale graph-structured computation plays a central role in tasks such as targeted advertising and natural language processing, and has driven the development of various graph-parallel abstraction models, such as Pregel and GraphLab.

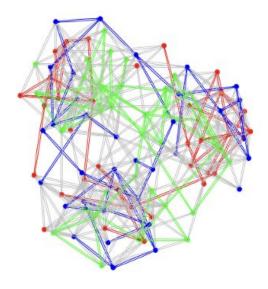


How Pregel and GraphLab Work

Pregel (vertex-centric distributed graph computing model)

- In each round, **only active vertices execute**: they read messages that arrived in the previous round, update local state, and send new messages that become visible in the next round.
- A global synchronization barrier at the end of each superstep keeps all machines in lockstep, which simplifies reasoning about correctness, convergence, and reproducibility

```
Message combiner(Message m1, Message m2):
   return Message(m1.value() + m2.value());
void PregelPageRank(Message msg):
   float total = msg.value();
   vertex.val = 0.15 + 0.85*total;
   foreach(nbr in out_neighbors):
      SendMsg(nbr, vertex.val/num_out_nbrs);
```

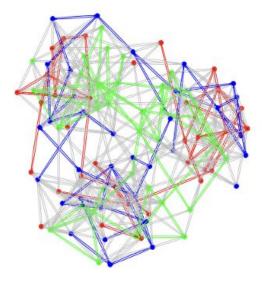


How Pregel and GraphLab Work

GraphLab (dependency-driven graph-parallel model)

- runs update functions over a vertex/edge—scoped neighborhood while enforcing a chosen consistency model to control concurrent reads/writes.
- supports asynchronous or quasi-synchronous execution and priority scheduling so that regions with recent changes are updated first, reducing global synchronization overhead and improving efficiency on sparse, non-uniformly active workloads.

```
void GraphLabPageRank(Scope scope) :
  float accum = 0;
  foreach (nbr in scope.in_nbrs) :
    accum += nbr.val / nbr.nout_nbrs();
  vertex.val = 0.15 + 0.85 * accum;
```



Challenges of Existing Frameworks

Pregel (vertex-centric distributed graph computing model)

- wait-for-the-slowes delays, tends to suffer from load imbalance and message storms on power-law graphs
- less convenient for complex subgraph operations or highly dynamic graphs

```
Message combiner(Message m1, Message m2):
   return Message(m1.value() + m2.value());
void PregelPageRank(Message msg):
   float total = msg.value();
   vertex.val = 0.15 + 0.85*total;
   foreach(nbr in out_neighbors):
      SendMsg(nbr, vertex.val/num_out_nbrs);
```

GraphLab (dependency-driven graph-parallel model)

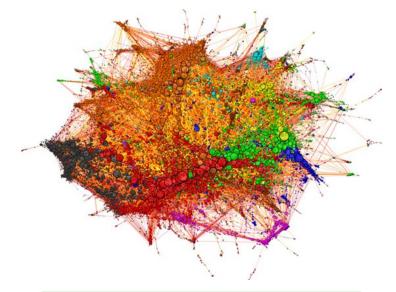
- higher implementation and debugging complexity
- need to manage locks and ghost/mirror state with associated communication and consistency costs
- potential non-deterministic execution orders, and contention around hotspot

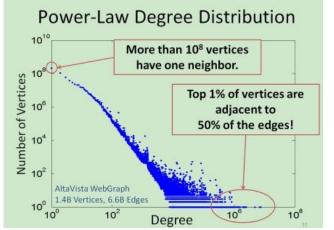
```
void GraphLabPageRank(Scope scope) :
  float accum = 0;
  foreach (nbr in scope.in_nbrs) :
    accum += nbr.val / nbr.nout_nbrs();
  vertex.val = 0.15 + 0.85 * accum;
```

Problem Trying to Solve

Large-scale graph-structured computation plays a central role in tasks such as targeted advertising and natural language processing, and has driven the development of various graph-parallel abstraction models, such as Pregel and GraphLab.

Real-world natural graphs often exhibit **highly skewed power-law degree distributions**, challenging the fundamental assumptions of existing abstractions and limiting system performance and scalability.



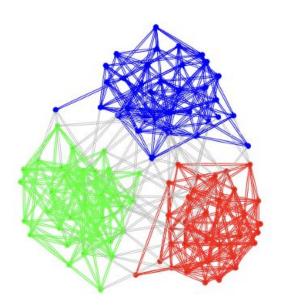


Challenges of Existing Frameworks

- Work Balance: Power-law distributions result in a few vertices having extremely high degrees (i.e., connecting to many edges), while most vertices have low degrees.
- Communication: High-degree vertices cause communication asymmetry
- **Storage:** Each machine must locally store adjacency information for its responsible vertices, with memory consumption linear in vertex degree.
- Computation: Existing abstractions treat each vertex program as an atomic unit, preventing further internal parallelization

PowerGraph

Instead of binding computation to vertices, PowerGraph uses the GAS (Gather-Apply-Scatter) model to factor the vertex program along edges. Gather/Scatter execute in parallel across machines on edge partitions, while a master performs Apply, so the work of high-degree vertices is distributed and parallelized



PowerGraph - GAS

Gather-Apply-Scatter (GAS)

- Gather: accumulate information from neighborhood.
- Apply: apply the accumulated value to center vertex.
- Scatter: update adjacent edges and vertices.

Figure 2: All PowerGraph programs must implement the stateless gather, sum, apply, and scatter functions.

Algorithm 1: Vertex-Program Execution Semantics

```
Input: Center vertex u

if cached accumulator a_u is empty then

| foreach neighbor v in gather_nbrs(u) do
| a_u \leftarrow \text{sum}(a_u, \text{gather}(D_u, D_{(u,v)}, D_v))
| end

end

D_u \leftarrow \text{apply}(D_u, a_u)

foreach neighbor v scatter_nbrs(u) do
| (D_{(u,v)}, \Delta a) \leftarrow \text{scatter}(D_u, D_{(u,v)}, D_v)
| if a_v and \Delta a are not Empty then a_v \leftarrow \text{sum}(a_v, \Delta a)
| else a_v \leftarrow \text{Empty}
```

PowerGraph - GAS

```
Pregel_PageRank(i, messages):
    // receive all the messages
    total = 0
    foreach(msg in messages):
        total = total + msg

    // update the rank of this vertex
    R[i] = total

// send new messages to neighbors
foreach(j in out_neighbors[i]):
    sendmsg(R[i] * wij) to vertex j
```

```
GraphLab_PageRank(i)
  // compute sum over neighbors
  total = 0
  foreach(j in in_neighbors(i)):
    total = total + R[j] * wji

// update the PageRank
  R[i] = total

// trigger neighbors to run again
  foreach(j in out_neighbors(i)):
    signal vertex-program on j
```

```
PowerGraph_PageRank(i):
    Gather(j -> i):
        return wji * R[j]

sum(a, b):
    return a + b

// total: Gather and sum
Apply(i, total):
    R[i] = total

Scatter(i -> j):
    if R[i] changed then activate(j)
```

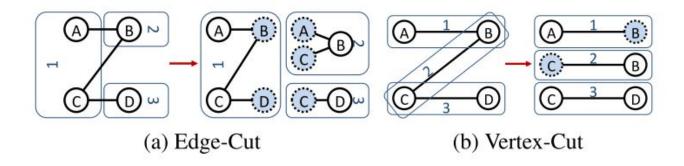
PowerGraph - Vertex-cut

Traditional Approach: Edge-Cut

- The graph is partitioned by edges into several subgraphs, with each machine storing a subset of edges.
- Each vertex can only belong to a single machine (the master).
- If an edge connects vertices on different machines, data transfer across the network is required.
- For supernodes (high-degree vertices), their numerous edges may be spread across many machines, leading to heavy remote access overhead

PowerGraph's Proposal: Vertex-Cut

- Partitioning is edge-centric
- A vertex is allowed to exist on multiple machines, where: One machine holds the master; Other machines hold mirrors



PowerGraph - Vertex-cut

Theorem 5.1. If vertices are randomly assigned to p machines then the expected fraction of edges cut is:

$$\mathbb{E}\left[\frac{|Edges\ Cut|}{|E|}\right] = 1 - \frac{1}{p}.\tag{5.1}$$

For a power-law graph with exponent α , the expected number of edges cut per-vertex is:

$$\mathbb{E}\left[\frac{|Edges\ Cut|}{|V|}\right] = \left(1 - \frac{1}{p}\right) \mathbb{E}\left[\mathbf{D}[v]\right] = \left(1 - \frac{1}{p}\right) \frac{\mathbf{h}_{|V|}\left(\alpha - 1\right)}{\mathbf{h}_{|V|}\left(\alpha\right)},\tag{5.2}$$

where the $\mathbf{h}_{|V|}(\alpha) = \sum_{d=1}^{|V|-1} d^{-\alpha}$ is the normalizing constant of the power-law Zipf distribution.

Theorem 5.2 (Randomized Vertex Cuts). A random vertex-cut on p machines has an expected replication:

$$\mathbb{E}\left[\frac{1}{|V|}\sum_{v\in V}|A(v)|\right] = \frac{p}{|V|}\sum_{v\in V}\left(1 - \left(1 - \frac{1}{p}\right)^{\mathbf{D}[v]}\right). \quad (5.5)$$

where $\mathbf{D}[v]$ denotes the degree of vertex v. For a power-law graph the expected replication (Fig. 6a) is determined entirely by the power-law constant α :

$$\mathbb{E}\left[\frac{1}{|V|}\sum_{v\in V}|A(v)|\right] = p - \frac{p}{\mathbf{h}_{|V|}(\alpha)}\sum_{d=1}^{|V|-1}\left(\frac{p-1}{p}\right)^{d}d^{-\alpha},\tag{5.6}$$

where $\mathbf{h}_{|V|}(\alpha) = \sum_{d=1}^{|V|-1} d^{-\alpha}$ is the normalizing constant of the power-law Zipf distribution.

Theorem 5.3. For a given an edge-cut with g ghosts, any vertex cut along the same partition boundary has strictly fewer than g mirrors.

Greedy Vertex-Cut

- Place edges one by one, choosing the machine that yields the lowest expected replication cost.
- Use heuristic rules to decide which machine an edge should be assigned to:
 - If both endpoints already have replicas on the same machine → place the edge there.
 - Otherwise, prefer the machine that hosts the endpoint with more unassigned edges remaining.

PowerGraph - Delta Caching

Core Ideas

- During the Scatter phase, return only the "delta" (Δa)
- The receiving vertex updates its local accumulator with Δa , instead of waiting for a full Gather.
- In the next Apply step, the vertex can directly use the already-maintained accumulator, thus skipping redundant Gather operations.

PageRank

```
// gather_nbrs: IN_NBRS
gather (D_u, D_{(u,v)}, D_v):
    return D_v.rank / #outNbrs (v)
sum (a, b): return a + b
apply (D_u, acc):
    rnew = 0.15 + 0.85 * acc
    D_u.delta = (\text{rnew} - D_u.\text{rank}) /
    #outNbrs (u)
D_u.\text{rank} = rnew
// scatter_nbrs: OUT_NBRS
scatter (D_u, D_{(u,v)}, D_v):
    if (|D_u.\text{delta}| > \mathcal{E}) Activate (v) return delta
```

Greedy Graph Coloring

```
// gather_nbrs: ALL_NBRS

gather (D_u, D_{(u,v)}, D_v):
    return set (D_v)

sum (a, b): return union (a, b)

apply (D_u, S):
    D_u = min c where c \notin S

// scatter_nbrs: ALL_NBRS

scatter (D_u, D_{(u,v)}, D_v):
    // Nbr changed since gather
    if (D_u == D_v)
    Activate (v)

// Invalidate cached accume return NULL
```

Single Source Shortest Path (SSSP)

```
// gather_nbrs: ALL_NBRS

gather (D_u, D_{(u,v)}, D_v):
    return D_v + D_{(v,u)}

sum (a, b): return min (a, b)

apply (D_u, \text{new_dist}):
    D_u = \text{new_dist}

// scatter_nbrs: ALL_NBRS

scatter (D_u, D_{(u,v)}, D_v):

// If changed activate neighbor if (\text{changed}(D_u)) Activate (v) if (\text{increased}(D_u)) return NULL else return D_u + D_{(u,v)}
```

Results - Implementation Variants

Synchronous (BSP):

All machines proceed in lockstep. Results are deterministic and easy to debug, but performance is easily dragged down by slow machines.

Asynchronous:

Vertices can execute at any time, and updates propagate immediately. This yields faster speed and higher resource utilization, but results may differ depending on execution order (non-deterministic).

Asynchronous + Serializable (Async+S):

Builds on asynchronous execution by introducing a consistency protocol, ensuring the final outcome is equivalent to some sequential order of execution. This retains the efficiency of asynchronous execution while guaranteeing consistent results.

Results - Implementation Results

Setup

Deployed on a **64-node Amazon EC2 cluster** (cc1.4xlarge instances, dual quad-core Xeon, 23 GB RAM, 10 GbE network).

Implementations Compared

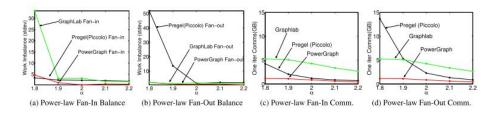
Three PowerGraph variants implemented: **Sync, Async, Async+Serializable**, to compare consistency-performance trade-offs.

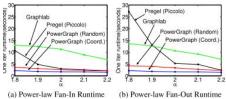
Key Findings

- On large workloads (PageRank, collaborative filtering, statistical inference), PowerGraph substantially reduces runtime compared to Pregel and GraphLab.
- Cuts communication and scales better, maintaining low network and storage overhead even in real deployment scenarios.
- Gains are **especially strong on power-law graphs**, with up to **~10× speedups**.

Results - Synthetic Graph Evaluation

- Metrics:
- Work imbalance → std dev of worker runtimes per iteration
- Communication volume → Bytes exchanged per iteration
- Per-iteration runtime → Execution time per superstep
- Findings:
- \circ Pregel / GraphLab: Work and communication imbalance increase with skew ($\alpha \uparrow$).
- PowerGraph:
 - Much lower communication volume
 - Balanced work distribution
 - Lower per-iteration time





Strengths

Significant performance gains

On real, large-scale datasets (e.g., social networks, web graphs), PowerGraph runs about **one order of magnitude faster**—roughly **10**× **speedup**—compared to traditional systems like Pregel and GraphLab.

Lower communication volume

dramatically reduces cross-machine communication on power-law graphs, leading to substantially lower overall communication cost than Pregel and GraphLab.

Better parallelism

splits the work of high-degree vertices across multiple machines, fully exploiting cluster parallelism.

Flexible execution

supports **synchronous**, **asynchronous**, and **asynchronous-serializable** modes, allowing users to trade off speed and consistency as needed.

Broad applicability

Across tasks such as **PageRank**, **collaborative filtering**, and **graph inference**, PowerGraph shows faster convergence and better scalability.

Weaknesses

• Memory & storage overhead from vertex replication

Vertex-cut enables high parallelism but increases the replication factor, which raises both storage cost and synchronization overhead.

Restricted applicability of Delta Caching

Delta Caching requires accumulator operations to be commutative, associative, and preferably invertible; it cannot be applied to algorithms with non-linear or conditional updates.

Coordination cost in the parallel locking protocol

The Async+Serializable mode introduces a parallel locking protocol to ensure serializability, but this adds synchronization and coordination overhead.

Lack of native support for dynamic graphs

The system assumes static graphs and does not directly support dynamic graph updates (e.g., edge insertions or deletions).

Potential Next Step? / Discussions

- Could an adaptive runtime that switches between synchronous and asynchronous modes help balance performance and correctness more effectively than current fixed approaches?
- Should evaluation metrics extend beyond runtime and communication to include energy efficiency, peak memory, and latency for more realistic performance assessment?
- How can PowerGraph be extended to support dynamic graphs, and what techniques are most promising?

