GraphChi: Large-Scale Graph Computation on Just a PC

By Aapo Kyrola, Guy Blelloch, & Carlos Guestrin Presented by Lucas Bautista

Guy Blelloch

Carlos Guestrin

Aapo Kyrola

Processing LARGE graphs

- Main problem is that large graphs don't fit into main memory
- Distributed Systems?
- Many problems with distributed systems
- Complexity
- Optimal Load Balancing (partitioning)
- Fault Tolerance

Processing LARGE graphs

- Main problem is that large graphs don't fit into main memory
- Distributed Systems?
- Many problems with distributed systems
- Complexity
- Optimal Load Balancing (partitioning)
- Fault Tolerance
- Use Pregel
- Synchronization is expensive
- Use PowerGraph/GraphLab
- . . .

Realistically though, some large graphs can fit in most computer disks + network communication might be slower(?)

Computational Model

We use a vertex-centric model of computation (like in Pregel)

G = (V, E) Directed + Sparse

Each vertex & edge has an associated value

- Vertices numbered from 1 to |V|
- User specified update-function
- Can modify edge & vertex values
- Executed until a termination condition is satisfied

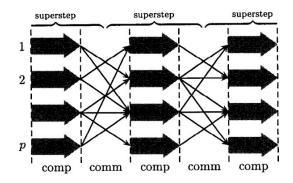
No explicit message sending.

Bulk Synchronous Parallel

- Parallel executions occur in lockstep (superstep idea / global barrier).
- Once all parallel executions terminate in a superstep, we can start a new superstep with the new generated values.

Downside: The synchronization step at the end of a superstep is costly

We trade off some parallelism for an asynchronous model.



Asynchronous model

- Each vertex can use the most recent values of edges
- Uses dynamic selective scheduling to only process nodes that will change because of updated values (similar to idle vs active nodes in the Pregel model).

Asynchronous model

- Each vertex can use the most recent values of edges
- Uses dynamic selective scheduling to only process nodes that will change because of updated values (similar to idle vs active nodes in the Pregel model).

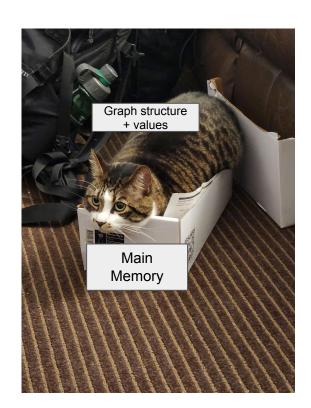
Problem: Concurrent reads & writes

 Sequential execution for vertices that share an edge

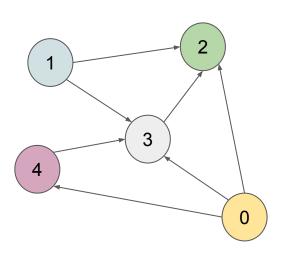
GraphChi

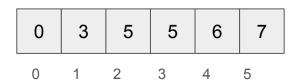
Assumptions

- Graph structure, vertex values, and edge values do not fit in main memory
- There is enough memory to contain the edges and their associated values of a single vertex
- All active windows of shards fit in main memory

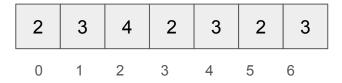


CSR



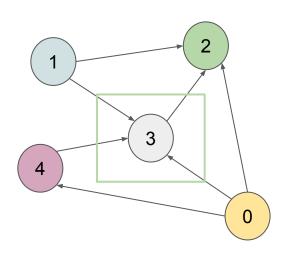


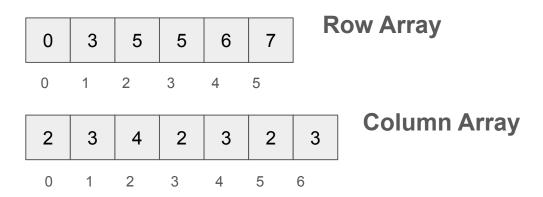
Row Array



Column Array

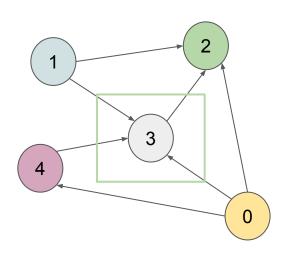
CSR

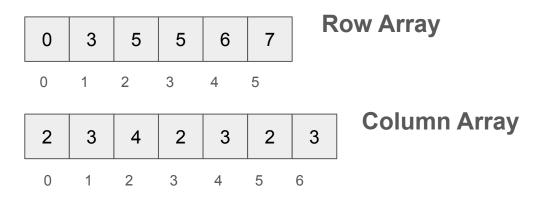




But we need to access the in-edges of a vertex as well, which is not easy to get from CSR form.

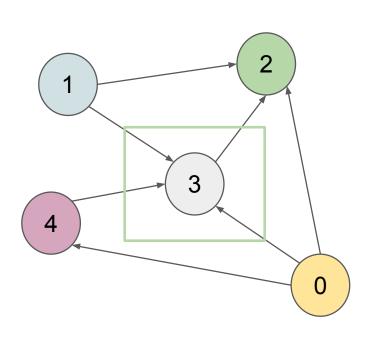
CSR



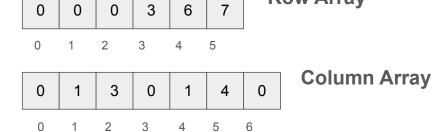


But we need to access the in-edges of a vertex as well, which is not easy to get from CSR form.

CSR + CSC



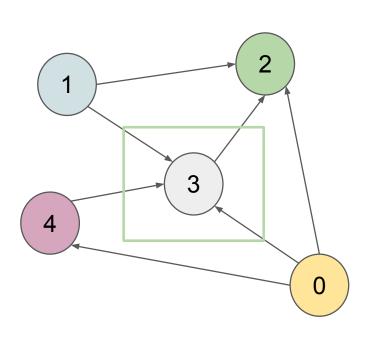
CSC (in-edges)



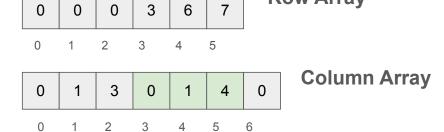
Row Array



CSR + CSC

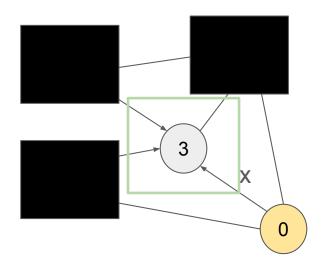


CSC (in-edges)

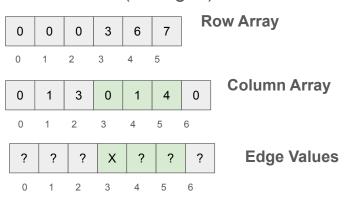


Row Array

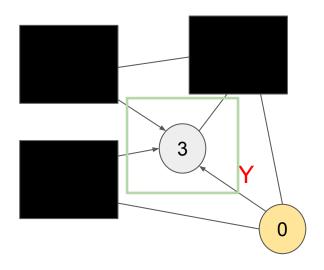
No message passing...



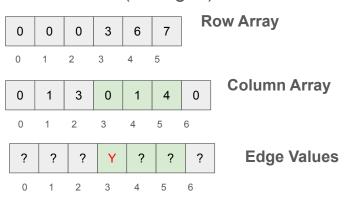
CSC (in-edges)



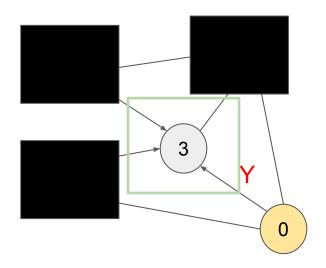
No message passing...



CSC (in-edges)

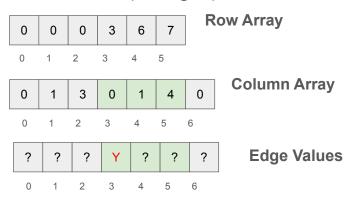


Case 1: Write to CSR

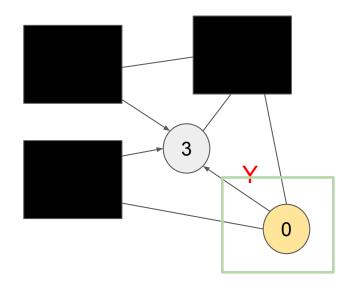


Incurs a random write

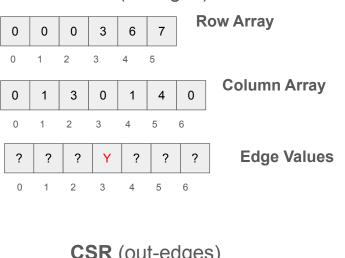
CSC (in-edges)

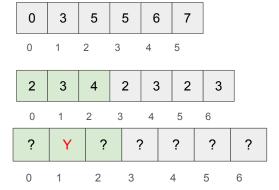


Case 1: Write to CSR

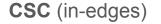


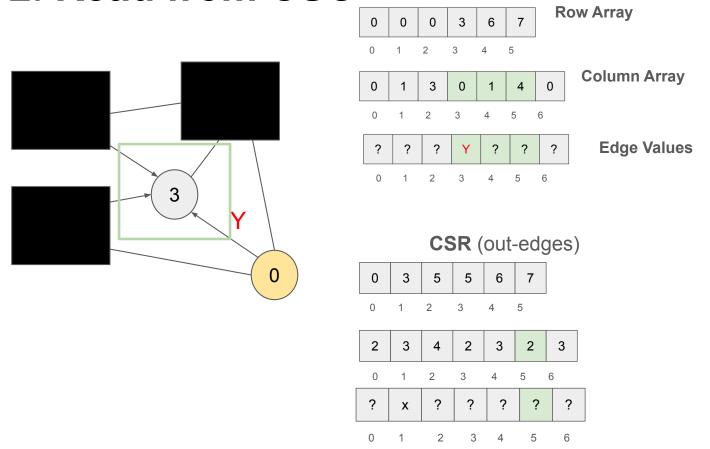
CSC (in-edges)





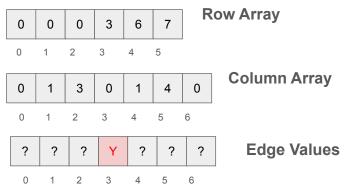
Case 2: Read from CSC



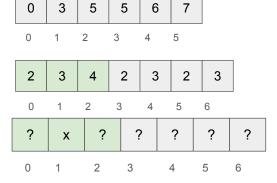


Case 2: Read from CSC

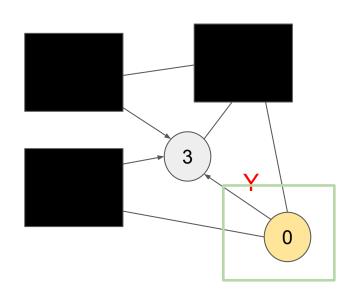


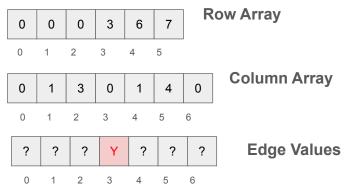


Incurs a random read



Case 2: Read from CSC





Incurs a random read

CSR + CSC

 Worst case scenario either we either have O(|E|) random reads or O(|E|) random writes.

Can we do better?

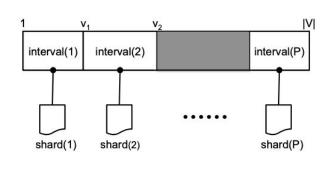
- SSD as a memory extension
- Exploiting locality
- Graph compression

Parallel Sliding Windows

STEPS

- 1. Load a subgraph into disk (so that we don't get a bunch of random misses)
- 2. Update vertices and edges
- 3. Write updated values to disk
- 4. Profit

Parallel Sliding Windows - Storage Structure



- We have a graph G = (V, E)
- We split V into P disjoint partitions called intervals.
- For each interval, we have a shard (set of edges going into our partition). - Sorted by the source node.
- We choose P so that shards are of relative size and each shard can be loaded completely into memory (we want the max shard size to be a quarter of main memory)

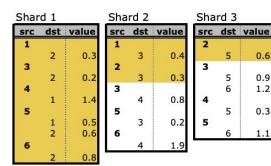
How are graphs processed?

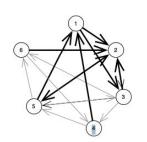
- GraphChi processes one interval at a time (as a subgraph)
- To actually create a subgraph we need to load our vertices, edges and our edge values
- Then we load the shard of our interval [edges going into our partition]
- How do we access the edges going out of our partition?

Accessing Out Edges of an Interval

- We keep track of P-1 sliding windows of the shards of the other P-1 intervals.
- Because we need to access a portion of each of our P shards to get the out edges of our interval of interest, we need P random reads
- Note, that if the degree distribution of a graph is not uniform, the window length is variable.

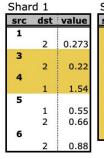
Parallel Sliding Windows - Storage Structure

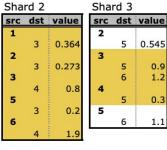




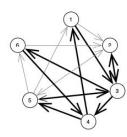
0.6

0.9 1.2

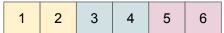




5 0.545



- (a) Execution interval (vertices 1-2)
- (b) Execution interval (vertices 1-2)
- (c) Execution interval (vertices 3-4)
- (d) Execution interval (vertices 3-4)



Parallel Execution

- Execute our user defined function for each vertex in our current interval in parallel.
- Vertices that have edges with both end-points in the same interval are flagged as critical, and are updated in sequential order.
- Non-critical vertices do not share edges with other vertices in the interval, and can be updated safely in parallel.

Still maintains asynchronous execution ... but limits parallelism

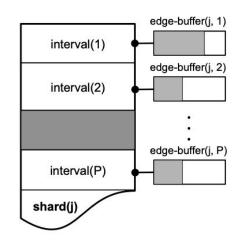
Updating values in disk

- Edge values are rewritten back to disk so that nodes in the next execution interval can access them.
- The entire memory shard is rewritten
- Only the sliding window of every other shard is rewritten

Number of non sequential writes is P (same as reads)

Handling Evolving Graphs

- Divide the shard into P logical parts: part j contains edges with source in the interval j.
- edge-buffer(p, j) for each logical part j, of shard p.
- When a new interval of vertices is loaded from disk, the edges in the edge-buffers are added to the in-memory graph



I/O Analysis

- I/O model -> Movement of data is more expensive than computation itself
- If both endpoints of an edge belong to the same vertex interval, the edge is read only once from disk; otherwise, it is read twice.
- If edges in both directions are modified, the number of writes is 2 per edge; if in only one direction, the number of writes is half as many.

$$\frac{2|E|}{B} \le Q_B(E) \le \frac{4|E|}{B} + \Theta(P^2)$$

Implementation

- Sharder -> Counts in-degree of vertices, computes a prefix-sum, divides vertices into P intervals
- Calculates memory needs using degreefiles
- Sub-intervals are used to account for unbalanced number of out-edges
- Selective Scheduling

Use Cases

- PageRank (transmit ranks through edges)
- Collaborative Filtering (recommend products based on purchases of others)
- Belief Propagation

Experimental Results

Most of the experiments were performed on a Apple Mac Mini computer ("Mac Mini"), with dual-core 2.5 GHz Intel i5 processor, 8 GB of main memory and a standard 256GB SSD drive (price \$1,683 (Jan, 2012))

For experiments with multiple hard drives we used an older 8-core server with four AMD Opteron 8384 processors, 64GB of RAM, running Linux ("AMD Server").

Experimental Results

Application & Graph	Iter.	Comparative result	GraphChi (Mac Mini)	Ref
Pagerank & domain	3	GraphLab[30] on AMD server (8 CPUs) 87 s	132 s	-
Pagerank & twitter-2010	5	Spark [45] with 50 nodes (100 CPUs): 486.6 s	790 s	[38]
Pagerank & V=105M, E=3.7B	100	Stanford GPS, 30 EC2 nodes (60 virt. cores), 144 min	approx. 581 min	[37]
Pagerank & V=1.0B, E=18.5B	1	Piccolo, 100 EC2 instances (200 cores) 70 s	approx. 26 min	[36]
Webgraph-BP & yahoo-web	1	Pegasus (Hadoop) on 100 machines: 22 min	27 min	[22]
ALS & netflix-mm, D=20	10	GraphLab on AMD server: 4.7 min	9.8 min (in-mem)	
			40 min (edge-repl.)	[30]
Triangle-count & twitter-2010	-	Hadoop, 1636 nodes: 423 min	60 min	[39]
Pagerank & twitter-2010	1	PowerGraph, 64 x 8 cores: 3.6 s	158 s	[20]
Triange-count & twitter- 2010	-	PowerGraph, 64 x 8 cores: 1.5 min	60 min	[20]

Table 2: Comparative performance. Table shows a selection of recent running time reports from the literature.

Experimental Results



Figure 9: (a,b) Evolving graphs: Performance when *twitter-2010* graph is ingested with a cap of 100K or 200K edges/sec, while simultaneously computing Pagerank.

Related Work

An improved memory management scheme for large scale graph computing engine GraphChi by Yifang Jiang et al. (2014/2015)

GraphMP: An Efficient Semi-External-Memory Big Graph Processing System on a Single Machine (2017)

GraphLab: A New Framework For Parallel Machine Learning

PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs

X-Stream: Edge-centric Graph Processing using Streaming Partitions

TurboGraph: a fast parallel graph engine handling billion-scale graphs in a single PC

Strengths, Weaknesses, and Next Steps

Strengths

- Easy to understand, simple
- Good system to use if you know nothing about distributed computing/don't have access to many resources
- Maintains the vertex-centric model
- Open source implementation

Next Steps

- Introduce parallel shard streaming to fully utilize multiple SSD channels.
- Combine with edge compression/decompression on the fly (like GraphMP).
- Edge cache for frequently used shards
- Store vertices in memory (semi-external)

Weaknesses

Did not go much into depth on selective scheduling and how critical nodes are scheduled.

Discussion Questions

- Realistically, what are some good use cases for data mining large graphs on a single PC
- If you own a big graph, wouldn't you want the fastest way to process it (distributed vs singular node)
- Is there still value in single-machine graph processing in the era of cheap cloud clusters and GPUs?
- Since we don't have explicit message passing, is this model less expressive (do some algorithms have more affinity for the Pregel-like model)