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Definition: Graph-Coloring

e Definition: Vertex Coloring
o Assignment of a color to each vertex of an
undirected graph G = (V, E), such that for every
edge (u, v) in E, u.color != v.color

e Find optimal vertex coloring (fewest colors)

e NP-complete problem

e In practice, approximation algorithms are
sufficient




Motivation

e Scheduling data graph computations

o Sequence of update on vertices of a graph

o New value of a vertex depends on value of vertex and adjacent vertex values
o Vertices of same color can be update in parallel

o Fewer colors < more parallelism

e Other real world applications:
o Register allocation via Graph Coloring



Properties of Good Parallel Ordering

e Quality ordering
e Scalable
e \Work Efficient



Greedy Algorithm

GREEDY(G)

1 letG=(V,E,p)

2 for v € V in order of decreasing p(v)
3 C ={1,2,...,deg(v)+1}

4 for u € v.adj such that p(u) > p(v)
5 C = C—{u.color}

6 v.color = minC

p- priority function

What is the required work?
Is this procedure parallelizable?

e Colors a graph with degree A
in at most A + 1 colors
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Example: Greedy Coloring
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Definitions: Ordering Heuristics (p(v))

FF: First fit
R: Random
LF: Largest degree first
SL: Smallest degree last
o Remove all lowest degree vertices and recursively color graph

e |D: Incidence-degree
o “Color degree”

e SD: Saturation degree
o “Distinct color degree”
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Example: Largest-First

4 Colors.
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Quality vs. Serial Runtime
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Parallel Greedy Coloring

JP(G)

7 let G=(V,E,p)

8 parallel forveV

9 vpred={u€cV:(u,v)€Eandp(u)>pW)}
10 vsucc={u €V :(u,v) €E and p(u) < p(v)}

Jones and Plassmann [35]

Line 17:
e JOIN(u.counter) checks if
u’s predecessors have been
colored

11 v.counter = |v.pred)|

12 parallel forveV

13 if v.pred ==

14 JP-COLOR(V)

JP-COLOR(V) GET-COLOR(V)

15 v.color = GET-COLOR(V) 19 C={1,2,...,|vpred|+1}
16 parallel for u € v.succ 20 parallel for u € v.pred

17 if JOIN(u.counter) == 21 C =C —{u.color}

18 JP-COLOR(u) 22 return minC



Example: Jones-Plassmann

Find root(s) of dag.

Jones and Plassmann - SIAM J. Scientific Computing, 1993
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Example: Jones-Plassmann

Yields the same coloring as the serial
Greedy algorithm.

Jones and Plassmann - SIAM J. Scientific Computing, 1993

Massachusetts Institute of Technology

HIIE
1
7]

49




Analysis

e Linear work in size of the graph
e Traditional heuristics vulnerable to adversarial inputs causing worst case Q(V)
span
o  Why?



Adversarial Input for JP-LF

THEOREM 7. Forany A > 0, there exists a A-degree graph G =
(V,E) such that JP-LF colors G in Q(A?) span and JP-R colors G
in O(AlgA+1g?AlgV /1glgV) expected span.




LLF Ordering Heuristics

e Largest-log-degree-first
o p(v) = <llog(deg(v))1, pR(v)>
e PR is arandom priority function



Clique-Chain with JP-LFF




SLL Ordering Heuristic

SLL-ASSIGN-PRIORITIES(G, r)

23
24
25
26
27
28
29
30
31
32
33
34
35

let G = (V,E)
i=1
U=V
let A be the degree of G
let pr € R be a random priority function
ford = OtolgA
for j = 1tor
Q= {uelU:|uadinU| <29}
parallel for v € O
p(v) = {i,pr(v))
U=U-0
i=i+1
return p



Analysis

o JP-R, JP-LLF, JP-SLL work efficient

e Span bounds:
o JP-R: O(IgV + IgA - min{ V E,A + IgAlgV/lgig\V})
o JP-LLF: O(IgAlgV +IgA(min{\NE,A}+Ig2AIgV/iglgV))
o JP-SLL: O(lgAlgV +lgA(min{ V E,A}+Ig2AlgV/igigV))



Empirical Evaluation

Benchmark suite: 8 real-world graphs and 10 synthetic graphs.

Serial Heuristic  Parallel Heuristic Color Ratio Efficiency Speedup
FF R .01 0.417 7.039
LF LLF 1.021 1.058 7.980
SL SLL 1.037 1.092 6.082

Color Ratio: Ratio of the number of colors used by the parallel heuristic to the serial heuristic.

Efficiency: Ratio of serial heuristic running time to the parallel heuristic run on a single core.

Speedup: The 12-core speedup of the parallel heuristic.



“Coarse Hierarchy” In Coloring Quality

FF<R<LLF<LF<SLL<SL



Implementation Techniques

e Join trees for reducing memory contention
on atomic counters
o (Line 17)
e Bit vectors for assigning colors
o (Line 19) Word containing adjacent colors,
maintained during joins
e Software prefetching
o (Line 16)

JP(G)
7 letG=(V,E,p)
8 parallel forveV

9 vpred={u €V :(u,v) € Eandp(u)>p(v)
10 visucc={u€V:(u,v) €E and p(u) <p(v)

11 v.counter = |v.pred|
12 parallel forveV

13 if v.pred ==0

14 JP-COLOR(V)

JP-COLOR(v)

15 v.color = GET-COLOR(V)
16 parallel for u € v.succ

17 if JOIN (u.counter) ==0
18 JP-COLOR(u)

—~

GET-COLOR(V)
19 C=1{1,2,...,|vpred|+1}
20 parallel for u € v.pred

21 C =C—{u.color}
22 return minC



“Coarse Hierarchy” In Coloring Quality

FF <R <LLF <LF<SLL<SL<SD?



Bonus: Saturation Degree

GREEDY-SD(G)

36 letG=(V,E) e “Saturation Table” Q
37 forveV

38 v.adjColors = @

39 v.adjUncolored = v.adj THEOREM 13. GREEDY-SD colors a graph G = (V,E) accord-
40 PUSHORADDKEY(v. Q[0][|v.adjUncolored||) ing to the SD ordering heuristic in O(V + E) time.

4 s=0

42 whiles >0

43 v = POPORDELKEY(Q/[s][max KEYS(Q[s])])

44 v.color = min({1,2,...,|v.adjUncolored| + 1} — v.adjColors)

45 for u € v.adjUncolored

46 REMOVEORDELKEY (u. Q||u.adjColors||||u.adjUncolored|])
47 u.adjColors = u.adjColors U {v.color}

43 u.adjUncolored = u.adjUncolored — {v}

49 PUSHORADDKEY(u, Q[|u.adjColors||[|u.adjUncolored|) )
50 s = max{s, |u.adjColors|}

51 while s > 0 and Q[s] == 0
52 3, =p=1



Bonus: Saturation Degree

GREEDY-SD(G)

36 letG = (V,E) e “Saturation Table” Q

37 forveV

38 v.adjColors = @

39 v.adjUncolored = v.adj THEOREM 13. GREEDY-SD colors a graph G = (V,E) accord-
40 PUSHORADDKEY(v, Q[0][|v.adjUncolored|)) ing to the SD ordering heuristic in ©(V + E) time.

4 s=0

42 whiles >0 e Ordering is determined during serial
43 v = POPORDELKEY(Q[s|[max KEYS(Q[s])]) coloring. How to parallelize?

4 v.color = min({1,2,....|v.adjUncolored| + 1} — v.adjColors)
45 for u € v.adjUncolored

46 REMOVEORDELKEY (u. Q||u.adjColors||||u.adjUncolored|])
47 u.adjColors = u.adjColors U {v.color}

43 u.adjUncolored = u.adjUncolored — {v}

49 PUSHORADDKEY(u, Q||u.adjColors||[|u.adjUncolored|))

50 s = max{s, |u.adjColors|}

51 while s > 0 and Q[s] == 0
52 s=s5—1
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Results

e Overall, JP-LLF obtains a geometric-mean speedup — the ratio of the runtime
on 1 core to the runtime on 12 cores — of 7.83 on the eight real-world graphs
and 8.08 on the ten synthetic graphs.

e Similarly, JP-SLL obtains a geometric-mean speedup of 5.36 and 7.02 on the
real-world and synthetic graphs, respectively.



Incidence Degree

e |Iteratively colors an uncolored vertex with the largest number of colored
neighbors



Smallest Degree Last

e First remove all lowest degree vertices
e Recursively color the new graph
e Add the removed vertices back and color



Saturation Degree

e Color an uncolored vertex whose colored neighbors use the largest number of
distinct colors



Lemma 1

The helper routine GET-COLOR, shown in Figure 2, can be implemented so that
during the execution of JP on a graph G = (V,E,p), a call to GET-COLOR(v) for a
vertex v € V costs O(k) work and ©O(lgk) span, where k = |v.pred|.

Proof:

e Represent set of colors as an array

e Use sentinels to represent removed elements
o Lines 20-21 require O(k) work and ©(Igk) span

e Implement min as a parallel reduction
o O(k) work and O(Igk) span

e QED



Theorem 2

Given a A-degree graph G = (V,E,p) for some priority function p, let Gp be the
priority dag induced on G by p, and let L be the depth of Gp . Then JP(G) runs in
O(V +E) work and O(LIgA+IgV) span



Lemma 3

The number of length-k simple paths in any A- degree graph G = (V,E) is at most
V| - min{A k-1 ,(2|E|/(k — 1))k—1}.



Lemma 4 gla.p)= zizg (gi’;g)

Define the function g(a,B) for a,f > 1.

ThenforallB=ze2,a=2,and 3 = a, we have g(a,) = 1.



Theorem 5

Let G = (V,E) be a A-degree graph, let n = |[V| and m = |E|, and let Gp be a priority
dag induced on G by a random priority function p € R. For any constant € > 0 and
sufficiently large n, with probability at most n—¢ , there exists a directed path of
length €2 - min{A, ¥ m} + (1 + €)min{e 2 InAlnn/InInn,Inn} in Gp .



Corollary 6

COROLLARY 6. Given a graph G = (V,E,p), where p € R is
a random priority function, the expected depth of the priority dag
Gp is O(min{VE,A+1gAlgV /lglgV}), and thus JP-R colors all
vertices of G with O(lgV +1gA-min{VE,A +IgAlgV/lglgV})
expected span.



Theorem 8

THEOREM 8. There exists a class of graphs such that for any
G = (V,E,p) in the class and for any priority function p € SL,
JP-SL incurs Q(V) span and JP-R incurs O(1gV /1glgV) span.



Theorem 9

THEOREM 9. Let G = (V,E) be a A-degree graph, and let
G, be the priority dag induced on G by a priority function p €
LLF. The expected length of the longest directed path in Gp is
O(min{A,vVE} +1g’AlgV /1glgV).



Corollary 10

COROLLARY 10. Given a graph G = (V,E,p) for some p €
LLF, JP-LLF colors all vertices in G with expected span O(1gV +
lgA(min{VE,A} +1g’AlgV /IglgV)). O



Corollary 12

COROLLARY 12. Given a graph G = (V,E,p) for some p €
SLL, JP-SLL colors all vertices in G with expected span
O(IgAlgV +1gA(min{VE,A} +1g’AlgV /1glgV)).



Definition: Vertex-Coloring

e Assignment of a color to each vertex of an undirected graph G = (V, E), such
that for every edge (u, v) in E, u.color != v.color



