
Ordering Heuristics for
Parallel Graph Coloring

Authors: William Hasenplaugh, Tim Kaler, Tao B. Schardl,
Charles E. Leiserson

Presentation by Ethan LaBelle

Definition: Graph-Coloring

● Definition: Vertex Coloring
○ Assignment of a color to each vertex of an

undirected graph G = (V, E), such that for every
edge (u, v) in E, u.color != v.color

● Find optimal vertex coloring (fewest colors)
● NP-complete problem
● In practice, approximation algorithms are

sufficient

Motivation

● Scheduling data graph computations
○ Sequence of update on vertices of a graph
○ New value of a vertex depends on value of vertex and adjacent vertex values
○ Vertices of same color can be update in parallel
○ Fewer colors ⇔ more parallelism

● Other real world applications:
○ Register allocation via Graph Coloring

Properties of Good Parallel Ordering

● Quality ordering
● Scalable
● Work Efficient

Greedy Algorithm

ρ- priority function

What is the required work?
Is this procedure parallelizable?

● Colors a graph with degree Δ
in at most Δ + 1 colors

Greedy Algorithm

ρ- priority function

What is the required work?
Is this procedure parallelizable?

● Colors a graph with degree Δ
in at most Δ + 1 colors

7

Example: Greedy Coloring
4 3

6 115

131

2

9 8

7
12

10

Colors
0
1
2
3
4
5

8

Example: Greedy Coloring
4 3

6 115

131

2

9 8

7
12

10

Colors
0
1
2
3
4
5

012345
Neighboring Colors

9

Example: Greedy Coloring
4 3

6 115

131

2

9 8

7
12

10

Colors
0
1
2
3
4
5

012345
Neighboring Colors

10

Example: Greedy Coloring
4 3

6 115

131

2

9 8

7
12

10

Colors
0
1
2
3
4
5

012345
Neighboring Colors

11

Example: Greedy Coloring
4 3

6 115

131

2

9 8

7
12

10

Colors
0
1
2
3
4
5

012345
Neighboring Colors

12

Example: Greedy Coloring
4 3

6 115

131

2

9 8

7
12

10

Colors
0
1
2
3
4
5

012345
Neighboring Colors

13

Example: Greedy Coloring
4 3

6 115

131

2

9 8

7
12

10

Colors
0
1
2
3
4
5

012345
Neighboring Colors

14

Example: Greedy Coloring
4 3

6 115

131

2

9 8

7
12

10

Colors
0
1
2
3
4
5

012345
Neighboring Colors

15

Example: Greedy Coloring
4 3

6 115

131

2

9 8

7
12

10

Colors
0
1
2
3
4
5

012345
Neighboring Colors

16

Example: Greedy Coloring
4 3

6 115

131

2

9 8

7
12

10

Colors
0
1
2
3
4
5

012345
Neighboring Colors

17

Example: Greedy Coloring
4 3

6 115

131

2

9 8

7
12

10

Colors
0
1
2
3
4
5

012345
Neighboring Colors

18

Example: Greedy Coloring
4 3

6 115

131

2

9 8

7
12

10

Colors
0
1
2
3
4
5

012345
Neighboring Colors

19

Example: Greedy Coloring
4 3

6 115

131

2

9 8

7
12

10

Colors
0
1
2
3
4
5

012345
Neighboring Colors

20

Example: Greedy Coloring
4 3

6 115

131

2

9 8

7
12

10

Colors
0
1
2
3
4
5

012345
Neighboring Colors

21

Example: Greedy Coloring
4 3

6 115

131

2

9 8

7
12

10

Colors
0
1
2
3
4
5

012345
Neighboring Colors

22

Example: Greedy Coloring
4 3

6 115

131

2

9 8

7
12

10

Colors
0
1
2
3
4
5

Why so many colors?!?!

The order in which we color the vertices influences the number of
colors.

Definitions: Ordering Heuristics (ρ(v))

● FF: First fit
● R: Random
● LF: Largest degree first
● SL: Smallest degree last

○ Remove all lowest degree vertices and recursively color graph
● ID: Incidence-degree

○ “Color degree”
● SD: Saturation degree

○ “Distinct color degree”

24

Example: Largest-First
8 5

6 17

312

13

4 9

10
2

11

Colors
0
1
2
3
4
5

012345
Neighboring Colors

25

Example: Largest-First
8 5

6 17

312

13

4 9

10
2

11

Colors
0
1
2
3
4
5

012345
Neighboring Colors

26

Example: Largest-First
8 5

6 17

312

13

4 9

10
2

11

Colors
0
1
2
3
4
5

012345
Neighboring Colors

27

Example: Largest-First
8 5

6 17

312

13

4 9

10
2

11

Colors
0
1
2
3
4
5

012345
Neighboring Colors

28

Example: Largest-First
8 5

6 17

312

13

4 9

10
2

11

Colors
0
1
2
3
4
5

012345
Neighboring Colors

29

Example: Largest-First
8 5

6 17

312

13

4 9

10
2

11

Colors
0
1
2
3
4
5

012345
Neighboring Colors

30

Example: Largest-First
8 5

6 17

312

13

4 9

10
2

11

Colors
0
1
2
3
4
5

012345
Neighboring Colors

31

Example: Largest-First
8 5

6 17

312

13

4 9

10
2

11

Colors
0
1
2
3
4
5

012345
Neighboring Colors

32

Example: Largest-First
8 5

6 17

312

13

4 9

10
2

11

Colors
0
1
2
3
4
5

012345
Neighboring Colors

33

Example: Largest-First
8 5

6 17

312

13

4 9

10
2

11

Colors
0
1
2
3
4
5

012345
Neighboring Colors

34

Example: Largest-First
8 5

6 17

312

13

4 9

10
2

11

Colors
0
1
2
3
4
5

012345
Neighboring Colors

35

Example: Largest-First
8 5

6 17

312

13

4 9

10
2

11

Colors
0
1
2
3
4
5

012345
Neighboring Colors

36

Example: Largest-First
8 5

6 17

312

13

4 9

10
2

11

Colors
0
1
2
3
4
5

012345
Neighboring Colors

37

Example: Largest-First
8 5

6 17

312

13

4 9

10
2

11

Colors
0
1
2
3
4
5

4 Colors.

38

Quality vs. Serial Runtime

39

Quality vs. Serial Runtime

40

Quality vs. Serial Runtime

41

Quality vs. Serial Runtime

Parallel Greedy Coloring
Jones and Plassmann [35]

Line 17:
● JOIN(u.counter) checks if

u’s predecessors have been
colored

43

Example: Jones-Plassmann
42 41

50 8445

9217

34

65
61

51
87

75

Jones and Plassmann - SIAM J. Scientific Computing, 1993

Colors
0
1
2
3
4
5

Find root(s) of dag.

44

Example: Jones-Plassmann
42 41

50 8445

9217

34

65
61

51
87

75

Jones and Plassmann - SIAM J. Scientific Computing, 1993

Colors
0
1
2
3
4
5

45

Example: Jones-Plassmann
42 41

50 8445

9217

34

65
61

51
87

75

Jones and Plassmann - SIAM J. Scientific Computing, 1993

Colors
0
1
2
3
4
5

46

Example: Jones-Plassmann
42 41

50 8445

9217

34

65
61

51
87

75

Jones and Plassmann - SIAM J. Scientific Computing, 1993

Colors
0
1
2
3
4
5

47

Example: Jones-Plassmann
42 41

50 8445

9217

34

65
61

51
87

75

Jones and Plassmann - SIAM J. Scientific Computing, 1993

Colors
0
1
2
3
4
5

48

Example: Jones-Plassmann
42 41

50 8445

9217

34

65
61

51
87

75

Jones and Plassmann - SIAM J. Scientific Computing, 1993

Colors
0
1
2
3
4
5

49

Example: Jones-Plassmann
42 41

50 8445

9217

34

65
61

51
87

75

Jones and Plassmann - SIAM J. Scientific Computing, 1993

Colors
0
1
2
3
4
5

Yields the same coloring as the serial
Greedy algorithm.

Analysis

● Linear work in size of the graph
● Traditional heuristics vulnerable to adversarial inputs causing worst case Ω(V)

span
○ Why?

Adversarial Input for JP-LF

LLF Ordering Heuristics

● Largest-log-degree-first
● ρ(v) = <⌈log(deg(v))⌉, ρR(v)>
● ρR is a random priority function

Clique-Chain with JP-LFF

SLL Ordering Heuristic

Analysis

● JP-R, JP-LLF, JP-SLL work efficient
● Span bounds:

○ JP-R: O(lgV + lg∆ · min{ √ E,∆ + lg∆lgV/lglgV})
○ JP-LLF: O(lg∆lgV +lg∆(min{√E,∆}+lg2∆lgV/lglgV))
○ JP-SLL: O(lg∆lgV +lg∆(min{ √ E,∆}+lg2∆lgV/lglgV))

Empirical Evaluation
Benchmark suite: 8 real-world graphs and 10 synthetic graphs.

Color Ratio: Ratio of the number of colors used by the parallel heuristic to the serial heuristic.

Efficiency: Ratio of serial heuristic running time to the parallel heuristic run on a single core.

Speedup: The 12-core speedup of the parallel heuristic.

Serial Heuristic Parallel Heuristic Color Ratio Efficiency Speedup
FF R 1.011 0.417 7.039
LF LLF 1.021 1.058 7.980
SL SLL 1.037 1.092 6.082

“Coarse Hierarchy” In Coloring Quality

FF < R < LLF < LF < SLL < SL

Implementation Techniques

● Join trees for reducing memory contention
on atomic counters

○ (Line 17)
● Bit vectors for assigning colors

○ (Line 19) Word containing adjacent colors,
maintained during joins

● Software prefetching
○ (Line 16)

“Coarse Hierarchy” In Coloring Quality

FF < R < LLF < LF < SLL < SL < SD?

Bonus: Saturation Degree

● “Saturation Table” Q

Bonus: Saturation Degree

● “Saturation Table” Q

● Ordering is determined during serial
coloring. How to parallelize?

Acknowledgements

● Professor Leiserson
● Will, Tim

Results

● Overall, JP-LLF obtains a geometric-mean speedup — the ratio of the runtime
on 1 core to the runtime on 12 cores — of 7.83 on the eight real-world graphs
and 8.08 on the ten synthetic graphs.

● Similarly, JP-SLL obtains a geometric-mean speedup of 5.36 and 7.02 on the
real-world and synthetic graphs, respectively.

Incidence Degree

● Iteratively colors an uncolored vertex with the largest number of colored
neighbors

Smallest Degree Last

● First remove all lowest degree vertices
● Recursively color the new graph
● Add the removed vertices back and color

Saturation Degree

● Color an uncolored vertex whose colored neighbors use the largest number of
distinct colors

Lemma 1

The helper routine GET-COLOR, shown in Figure 2, can be implemented so that
during the execution of JP on a graph G = (V,E,ρ), a call to GET-COLOR(v) for a
vertex v ∈ V costs Θ(k) work and Θ(lgk) span, where k = |v.pred|.

Proof:

● Represent set of colors as an array
● Use sentinels to represent removed elements

○ Lines 20-21 require Θ(k) work and Θ(lgk) span
● Implement min as a parallel reduction

○ Θ(k) work and Θ(lgk) span
● QED

Theorem 2

Given a ∆-degree graph G = (V,E,ρ) for some priority function ρ, let Gρ be the
priority dag induced on G by ρ, and let L be the depth of Gρ . Then JP(G) runs in
Θ(V +E) work and O(Llg∆+lgV) span

Lemma 3

The number of length-k simple paths in any ∆- degree graph G = (V,E) is at most
|V| · min{∆ k−1 ,(2|E|/(k − 1))k−1}.

Lemma 4

Define the function g(α,β) for α,β > 1.

Then for all β ≥ e 2 , α ≥ 2, and β ≥ α, we have g(α,β) ≥ 1.

Theorem 5

Let G = (V,E) be a ∆-degree graph, let n = |V| and m = |E|, and let Gρ be a priority
dag induced on G by a random priority function ρ ∈ R. For any constant ε > 0 and
sufficiently large n, with probability at most n−ε , there exists a directed path of
length e2 · min{∆, √ m} + (1 + ε)min{e 2 ln∆lnn/lnlnn,lnn} in Gρ .

Corollary 6

Theorem 8

Theorem 9

Corollary 10

Corollary 12

Definition: Vertex-Coloring

● Assignment of a color to each vertex of an undirected graph G = (V, E), such
that for every edge (u, v) in E, u.color != v.color

