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Maximum Value Vertex in a Graph

Given a directed graph, how might you find the maximum value
across all vertices?

What if the graph was very large?

What if the problem was more complex?

Pregel provides a system and way of thinking to tackle graph
problems like these in parallel.
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Existing Parallel Graph Systems

Prior to Pregel, libraries like Parallel BGL and CGMgraph existed.

Libraries support selection of distributed graph algorithms

Libraries are limited by implemented algorithms and their
implementations

Don’t address fault tolerance and other issues large graphs
can be subject to in distributed computing
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Large Graphs

Large graphs are often used for potent computing problems,
e.g. Web graph, social networks, etc.

Efficient processing is especially difficult due to their size

Prior to the paper, run algorithms on large graphs via:

Create a new distributed infrastructure for particular problem
(high effort)
Use existing distributed computing platform, e.g. MapReduce
(unfit)
Single-computer graph algorithm libraries (limited scope)
Existing parallel graph systems, e.g. Parallel BGL (limited and
not fault-tolerant)

Pregel is a system that is scalable, flexible, and fault-tolerant
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Setup and Structure

Input is a directed graph

Each vertex has a vertex identifier and modifiable associated
value
Each directed edge is associated with a source vertex, and has
a modifiable value and target vertex identifier

Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C. Dehnert, Ilan Horn, Naty Leiser, and Grzegorz CzajkowskiPregel



Model of Computation
Architecture and Implementation

Applications
Results

Superstep

Computations involve sequence of iterations, supersteps

Within a superstep S , vertices compute conceptually in
parallel (vertex-centric system):

Can modify the state of itself or outgoing edges
Can receive messages sent from vertices in S − 1 and send
messages to vertices to be received in S + 1
Can modify the graph’s topology
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Termination

All vertices start active but can vote to halt

Inactive vertices are reactivated upon receiving a message

Algorithm terminates when all vertices are inactive

Output of algorithm is set of values output by vertices

Message passing amortizes latency by batching (remote reads
unnecessary)
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Maximum Example
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Architecture Overview

Graph divided into partitions, containing vertices and all their
outgoing edges (default by hash)

1 Copies of user program execute on cluster of machines, with
one copy designated and known by others as master

2 Master determines partitions of graph, assigning partition(s)
to workers

3 Master portions user input across workers to initialize

4 As long as active vertices, master instructs workers to perform
superstep (one thread per partition); worker responds with
number of active vertices next superstep
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Worker Implementation

Worker machines maintain state of their portion of the graph

Vertex info: value, outgoing edges (value and target vertex),
incoming messages, active flag

Superstep by looping through all vertices and calling
Compute()

Passes current value, iterator to incoming messages (no
guaranteed order), iterator to outgoing edges
Same function executed at all vertices
Maintain two copies of active vertex flags and incoming
message queue

Handle sending messages to other vertices (batch remote and
immediate local)

User-defined combiners can combine messages via
commutative and associative operations, e.g. addition
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Worker Implementation (Maximum Example)
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Worker Implementation (Topology Mutations)

Compute() can issue requests to add/remove vertices/edges

Mutations take effect in next superstep

Partial ordering in case of conflicts:
1 Edge removal
2 Vertex removal
3 Vertex addition
4 Edge addition

Final resort: independent user-defined handlers (keeping
Compute() simple)
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Master Implementation

Maintain alive workers, addressing information, and assigned
graph portions

Size required proportional to number of partitions

Coordinate worker activity

Same request sent to each worker

Maintain stats on computation and state of graph
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Aggregators

Aggregators allow global monitoring, data, and
communication

Aggregators can take vertex-provided values in superstep S ,
combine using a reduction operator, made available at S + 1

Useful for stats (total # edges), global coordination
(synchronized branching)

Workers maintain aggregator instances, partially reduce over
vertices, tree-based reduction across workers delivered to
master
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Fault Tolerance

Master instructs workers to save state to persistent storage at
beginning of superstep

Failures detected via “ping” messages issued from master to
worker

Confined recovery limits recovery to lost partitions
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PageRank

Goal: Roughly estimates how important a page (vertex) is based
on links (edges) to it

Vertex values v : tentative page rank (initialized to 1/n, n
vertices)

Outgoing message: v

Compute(): v ← 0.15/n + 0.85 ·
∑

u∈incoming

msg [u]

Run until some level of convergence ϵ
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Single-Source Shortest Paths

Goal: Finds the shortest distance from a source vertex s to every
other vertex in the graph

Vertex values v : current shortest path from s (initialized to 0
for s, ∞ otherwise)

Outgoing message for edge e: v + e.v (potentially new
shortest distance)

Compute(): v ← min( min
u∈incoming

msg [u], v)

Run until no more updates (termination guaranteed for
nonnegative edge weights)

Can use a minimum combiner
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SSSP Scale With Worker Tasks
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SSSP Scale With Graph Size
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SSSP on Log Normal Random Graphs
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Notes on Results

Topology-aware partitioning would perform better

More advanced algorithm would perform better

Results merely indicate satisfactory performance (comparable
to Parallel BGL and scales better)

Mainly designed for sparse graphs where communication
primarily resides over edges
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Considerations

Master operations require barrier synchronization

Faster workers frequently have to wait to synchronize between
supersteps

Serializability not provided due to delay of supersteps
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