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Pagerank
• Algorithm for ranking vertices by importance/popularity

• Model the web such that webpages are vertices and links connecting webpages are 

edges

• The algorithm progresses in rounds/iterations
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Dampening factor:  
introduces randomness
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What does “communication” mean 
here?
• Communication here refers to the movement of data between the cache and memory 

• When processing large graphs, input, output and intermediate values may not all fit 

into cache

• So we may incur cache misses as we read and write data during execution

• Poor locality in reading/writing data = Lots of cache misses = High communication 

costs

• Reducing Pagerank communication = improving locality when executing Pagerank 

algorithm on large graphs
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What existed before propagation 
blocking?
• Reordering  graphs by  relabelling

• Processing vertices in certain orders

• Graph compression

• Cache Blocking/Tiling



Results for Propagation Blocking(PB)

Legend

CB: Cache blocking

PB: Propagation 
blocking

DPB: Deterministic 
propagation blocking



Presentation Outline
• Pagerank & the problem of locality

• Idea 1: Using cache blocking

• Idea 2: Propagation blocking

• Evaluation of Propagation Blocking

• Generalization to other applications



Pagerank & Locality: 
Pagerank variants



PageRank Terminology from paper
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PageRank Terminology from paper
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Single term called 
the contribution of v 
to sum(u)
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Pagerank & 
Communication: The 
problem of  locality



Why Pagerank can incur high 
communication cost
• Both the contributions array and the sums array do not  fit into cache*

• This means non-contiguous accesses to these arrays can lead to high  communication 

costs because we encounter more cache misses

• Notice we don’t have to worry about the adjacency matrix because the sparse matrix 

representation guarantees that we achieve good locality

*= for the graphs we are looking at at least



But what technique can we use 
when we have a 2D array and want 

to maximize locality?
?

What’s the solution to this?



But what technique can we use 
when we have a 2D array and want 

to maximize locality?
Yay Blocking!

What’s the solution to this?



Blocking to improve 
locality/reduce 

communication costs



Idea 1: Cache Blocking



Cache Blocking to improve locality 
in pull direction
• When reading from the 

contributions array, first break up 

the array into blocks/tiles

• Create a sums array

• Go block by block reading the 

contribution array and adding it to 
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Cache Blocking to improve locality 
in push direction
• When computing the sums array, 

break up the graph into blocks and 

compute sums for each vertex 

block by block

Sums

Adjacency Matrix

Source

Destination



Cache Blocking to improve locality 
in push direction
• When computing the sums array, 

break up the graph into blocks and 

compute sums for each vertex 

block by block

Sums

Adjacency Matrix

Source

Destination



Cache Blocking to improve locality 
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We still have a problem!

• For the pull direction we made it better for reading values from the 

contributions array but made it worse for calculating sums

• For the push direction we made it better for writing values to the sums 

array but may have made it worse for calculating contributions.

• Also cache blocking doesn’t scale!



Idea 2: Propagation 
Blocking



Propagation blocking definition

• We will block propagations rather than the graph!

• Propagations here are the contribution each vertex makes to its outgoing neighbours’ 

sums.

• This way our blocking scales with the updates per round and not the graph size per 

se.



Propagation blocking stages

Binning Accumulate



Binning

. . .

• Sub-divide your destination vertices into 
bins

• Note that multiple destination vertices 
will map to a bin

• Vertices next to each other are in the 
same bin

Adjacency Matrix
Destination

Source

• As we compute the contribution of a source to it’s 
destination vertices, we do not add this to the sums array

• We first put it in the corresponding bin of that 
destination vertex

• Because multiple vertices  map to a bin, you must 
include the destination vertex of the contribution

Propagation blocking first phase

contribution, destination 



Accumulate

. . .

• Process each bin consecutively
• Adding the contribution to the sum of 

the destination vertex in the sums array 

Sums

Propagation blocking second phase



Accumulate

. . .

• Process each bin consecutively
• Adding the contribution to the sum of 

the destination vertex in the sums array 

Sums

Propagation blocking second phase



Why is propagation blocking a 
good idea?
• The paper focuses on running Pagerank on a sparse graph and so the number of 

updates to vertices is relatively small (low edge traffic)

• This means the space taken up by buckets << the number of vertices

• So we are better off writing to buckets first than directly to the sums array

• This way, when we write back to the sums array we will enjoy high spatial locality and 

subsequently lower communication cost



Evaluating Propagation 
Blocking



What do we compare?
• They compare the performance of four different PageRank implementations:

• Baseline(PageRank implementation from existing graph processing libraries)

• Cache Blocking

• Propagation Blocking

• Deterministic Propagation Blocking

. . .

Contribution, destination



Taxonomy for graphs used in 
evaluation

Graphs

Synthetic 
Graphs

Low locality 
graphs

High Locality 
Graphs

Real-world 
graphs

Low locality 
graphs

High Locality 
Graphs

urand grpahs kron webrnd web



Communication reduction for graphs

Significant speedups for those graphs that suffer from low locality.



Communication reduction vs. Speedup

The decrease in communication cost does not translate to an equivalent decrease in runtime.



Best technique depends on the size 
of  the graph
• For small graphs, baseline implementation without blocking provides the best performance

• For medium sized graphs, cache blocking with the push implementation provides the best 

performance

• For large graphs, propagation blocking works best and scales best.

• Here small, medium and large is relative to size of cache.



Generalization of  
Propagation Blocking



Applications beyond PageRank
• Not limited to PageRank

• In fact propagation blocking is a powerful idea that tries to scale communication cost 

with the amount of actual computation work we do

• Idea also applicable to SpMV(sparse matrix vector multiplication) since most graph 

problems share a duality with matrix computation problems


