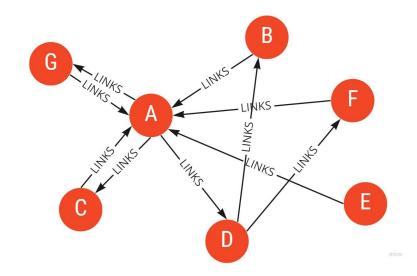
Making Caches Work for Graph Analytics

By: Yunming Zhang, Vladimir Kiriansky, Charith Mendis, Saman Amarasinghe, Matei Zaharia

Presented By: Kevin Tong, MIT 6.506

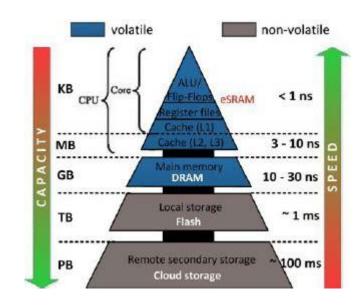
What is Graph Analytics?

- Graph Analytics is a form of data analysis used in many fields (business, financial, biological, social networks, etc.).
- Computes information in graph networks.
- Examples: PageRank algorithm.



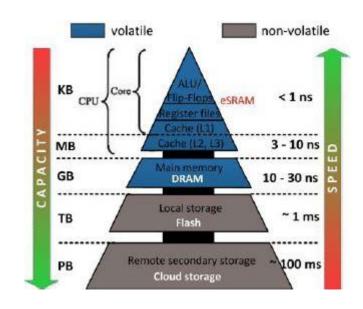
Caches Review

- Computer memory has many layers.
- The fastest access is in cache.
- The next fastest is main memory (DRAM).
- Software performance can be improved by utilizing the caches more.



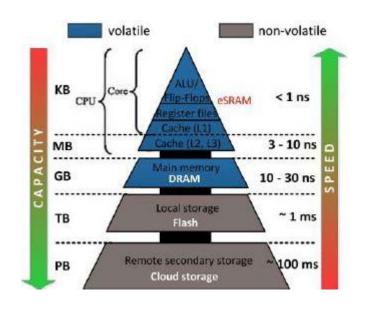
Problem Overview

- There are many existing optimized graph frameworks
 - GraphLab
 - Ligra
 - Galois
 - GraphMat
 - etc.
- The fastest frameworks have 60-80% of cycles stalled on memory access to DRAM.



Problem Causes

- The cache is not optimized aggressively (Might be using L3 cache and DRAM a lot, but not L1/L2).
- When we increase the number of cores, the performance does not scale well.
- The runtime overhead from running secondary computations is too high.



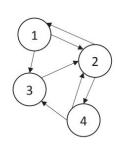
Problem Example: GridGraph

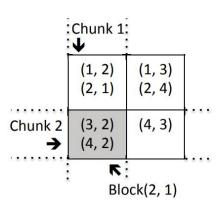
- Implementation:

- Organizes edges into "grid" (rows determine source vertex, columns indicate destination vertex)
- Computes data at vertex and streams to edges.
- Applies updates instantaneously from edge streams.

- Problems:

- Does not scale well beyond 4-6 cores due to cache contention





Problem Example: X-Stream

- Implementation
 - Performs computations from the edges of the graph
 - Keeps in-streams and out-streams partitioned to fit in cache to store updates
 - Streams the updates to the update in-stream
 - Shuffles the updates from the in-stream to corresponding destination out-streams
 - Applies the updates from the out-streams to corresponding vertices

- Problem

- Incurs significant runtime overhead from shuffle and gather phase

Considerations

- Partition graph into smaller sections
 - 2D grid
 - Streaming Partitions
- Store in a certain data format
 - Sorted compressed graph
 - Unsorted edge list
- Exploit parallelism
 - Across single partition
 - Across multiple partitions
- Utilize entire cache system
 - L1, L2, shared LLC
- Minimize overhead incurred

- Cagra is a novel graph analytic framework

- Attains speed-up over 2 times faster than the fastest frameworks at the

time

Dataset	Cagra	HandOpt	GraphMat	Ligra	GridGraph
		C++	_		_
Live	0.017s	0.031s	0.028s	0.076s	0.195
Journal	$(1.00\times)$	$(1.79\times)$	$(1.66\times)$	$(4.45\times)$	$(11.5\times)$
Twitter	0.29s	0.79s	1.20s	2.57s	2.58
	$(1.00\times)$	$(2.72\times)$	$(4.13\times)$	$(8.86\times)$	$(8.90\times)$
RMAT	0.15s	0.33s	0.5s	1.28s	1.65
25	$(1.00\times)$	$(2.20\times)$	$(3.33\times)$	$(8.53\times)$	$(11.0\times)$
RMAT	0.58s	1.63s	2.50s	4.96s	6.5
27	$(1.00\times)$	$(2.80\times)$	$(4.30\times)$	$(8.53\times)$	$(11.20\times)$
SD	0.43	1.33	2.23	3.48	3.9
	$(1.00\times)$	$(2.62\times)$	$(5.18\times)$	$(8.10\times)$	$(9.07\times)$

Cagra Performance on PageRank compared to other frameworks

Dataset	Cagra	HandOpt C++	Ligra
Live Journal	$0.02s~(1\times)$	$0.01s~(0.68\times)$	$0.03s (1.51 \times)$
Twitter	0.27s (1×)	0.51s (1.73×)	1.16s (3.57×)
RMAT 25	0.14s (1×)	$0.33s~(2.20\times)$	0.5s (3.33×)
RMAT 27	$0.52s (1 \times)$	1.17s (2.25×)	2.90s (5.58×)
SD	0.34 (1×)	1.05 (3.09×)	2.28 (6.71×)

Cagra Performance on Label Propagation compared to other frameworks

Dataset	Cagra	HandOpt C++	GraphMat
Netflix	$0.20s\ (1\times)$	$0.32s (1.56 \times)$	$0.5s~(2.50\times)$
Netflix2x	0.81s (1×)	1.63s (2.01×)	2.16s (2.67×)
Netflix4x	1.61s (1×)	$3.78s~(2.80\times)$	7s (4.35×)

Cagra Performance on Collaborative Filtering compared to other frameworks

Dataset	Cagra	Ligra
LiveJournal	1.2s (1×)	$1.2s~(1.00\times)$
Twitter	14.6s (1×)	17.5s (1.19×)
RMAT 25	7.08s (1×)	11.1s (1.56×)
RMAT 27	21.9s (1×)	42.8s (1.95×)
SD	15.0(1×)	19.7 (1.31×)

Cagra Performance on Between Centrality compared to other frameworks

Cagra Overview

- Cagra divides graph into subgraphs through compressed sparse row (CSR) segmenting in preprocessing
- 2. Cagra processes subgraphs in parallel
- 3. Intermediate results are locally merged and stored in buffers
- 4. Parallel cache-aware merge is used to combine buffers within L1 cache

Compressed Sparse Row (CSR) Segmenting

Motivation: Page Rank

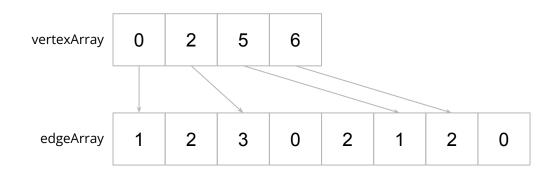
- Each vertex (destination)
 computes rank based on
 neighbors (sources)
- Common pattern seen in graph algorithms (Collaborative Filtering, Betweenness Centrality)

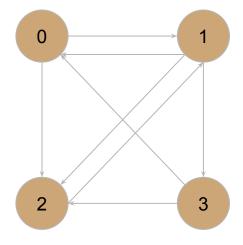
Algorithm 1 PageRank

```
procedure PAGERANK(Graph G)
parallel for v : G.vertexArray do
for u : G.edgeArray[v] do
G.newRank[v] +=
G.rank[u] / G.degree[u]
end for
end parallel for
end procedure
```

CSR Format

- vertexArray with O(V) length
- edgeArray with O(E) length
- Application-specific data in separate array





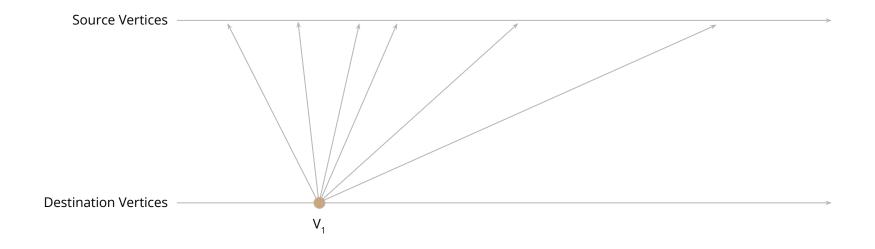
Problem: Random reads

- Each vertex, v, accesses neighbors, u
- Can't predict u, so each read to rank and degree is random
- Bad use of cache

Algorithm 1 PageRank

```
procedure PAGERANK(Graph G)
parallel for v : G.vertexArray do
for u : G.edgeArray[v] do
G.newRank[v] +=
G.rank[u] / G.degree[u]
end for
end parallel for
end procedure
```

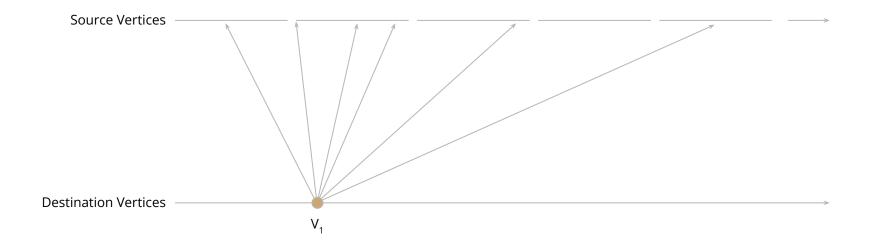
Illustration



CSR Segmenting

- Breaks up graph into cache-sized segments of vertex data (preprocessed)
- Performance is scalable across all cores
- Incurs low runtime overhead

Illustration



Preprocessing

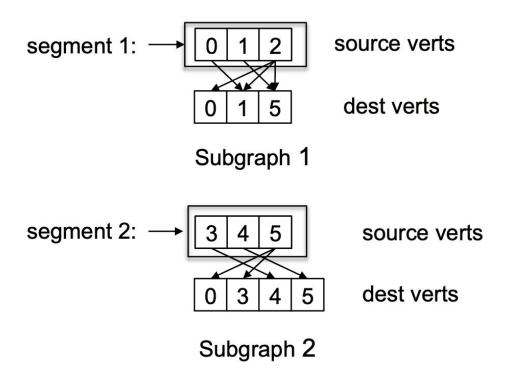
- Breaks graph into several subgraphs based on segments
- Segments contain
 - Idx map from local to global
 - Intermediate buffer
 - BlockIndices for merge

Algorithm 2 Preprocessing

```
Input: Number of vertices per segment N, Graph G
for v: G.vertices do
    for inEdge: G.inEdges(v) do
        segment ID \leftarrow inEdge.src/N
        subgraphs [segment ID]. addInEdge(v, inEdge.src)
    end for
end for
for subgraph: subgraphs do
    subgraph.sort ByDestination()
    subgraph.construct IdxMap()
    subgraph.construct BlockIndices()
    subgraph.construct IntermBuf()
end for
```

CSR Segmenting

original graph:



Parallel Segment Processing

- Parallelism exploited on single large segment
 - Threads share same working set
 - More threads does not create cache contention
- In comparison to multiple smaller segments
 - Smaller segment's working set fit in L2 cache
 - Merging overhead becomes bottleneck

Algorithm 3 Parallel Segment Processing

```
 \begin{array}{c} \textbf{for } subgraph: subgraphs \ \textbf{do} \\ \textbf{parallel for } v: subgraph.Vertices \ \textbf{do} \\ \textbf{for } inEdge: subgraph.inEdges(v) \ \textbf{do} \\ \textbf{Process } inEdge \\ \textbf{end for} \\ \textbf{end parallel for} \\ \textbf{end for} \end{array}
```

Comparison with 2D Partitioning

- Cagra partitions only on source vertices
- Benefits:
 - This produces less subgraphs, leading to better scalability when processing
 - This leads to a faster merge since there are less subgraphs to merge in the end

Algorithm 3 Parallel Segment Processing

```
\begin{array}{c} \textbf{for } subgraph: subgraphs \ \textbf{do} \\ \textbf{parallel for } v: subgraph.Vertices \ \textbf{do} \\ \textbf{for } inEdge: subgraph.inEdges(v) \ \textbf{do} \\ \textbf{Process } inEdge \\ \textbf{end for} \\ \textbf{end parallel for} \\ \textbf{end for} \end{array}
```

Parallelism Across Vertices

- Parallelism only done across vertices, not within single vertex
 - Takes advantage of CSR format
 - No need for atomics for synchronization
 - Updates to each vertex merged locally by same worker thread

Algorithm 3 Parallel Segment Processing

```
 \begin{array}{c} \textbf{for } subgraph: subgraphs \ \textbf{do} \\ \textbf{parallel for } v: subgraph.Vertices \ \textbf{do} \\ \textbf{for } inEdge: subgraph.inEdges(v) \ \textbf{do} \\ \textbf{Process } inEdge \\ \textbf{end for} \\ \textbf{end parallel for} \\ \textbf{end for} \end{array}
```

Cache-aware Merge

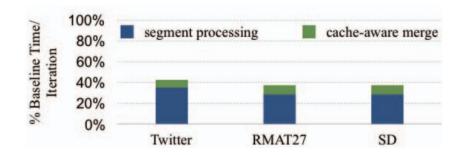
- After computation, we need to merge results
- IntermBufs are merged into one dense output vector
- The buffers are accessed sequentially
- Range of Vertex IDs is divided into L1-cache-sized blocks

Algorithm 4 Cache-Aware Merge

```
 \begin{array}{l} \textbf{parallel for } block: blocks \ \textbf{do} \\ \textbf{for } subgraph: G.subgraphs \ \textbf{do} \\ blockStart \leftarrow subgraph.blockStarts[block] \\ blockEnd \leftarrow subgraph.blockEnds[block] \\ intermBuf \leftarrow subgraph.intermBuf \\ \textbf{for } localIdx \ \textbf{from } blockStart \ \textbf{to } blockEnd \ \textbf{do} \\ globalIdx \leftarrow subgraph.idxMap[localIdx] \\ localUpdate = intermBuf[localIdx] \\ \textbf{merge}(output[globalIdx], localUpdate) \\ \textbf{end for} \\ \textbf{end for} \\ \textbf{end parallel for} \\ \textbf{return } output \end{array}
```

Cache-aware Merge Results

- The cache-aware merge algorithm has small runtime overhead



CSR Segmenting Results

- Improved cache utilization, accesses to DRAM sequential
- Scalability
 - Threads can parallelize execution within subgraphs
 - No need for atomic operations or synchronization
 - Merge phase can be parallelized
- Low overhead
 - Cache-aware merge requires little extra sequential memory accesses
 - Merges in L1 cache in parallel
 - Single sequential pass through edges
- Easy to use
 - Applies to a large variety of algorithms

Segment Size Tradeoff

- As seen, the Cagra framework sees a tradeoff with segment size
- Smaller segments
 - Fit into lower level cache
 - Reduced random access latency
 - Incur more overhead from merges for same destination
- Authors found sizing segments to fit in L3 cache led to best tradeoff

Frequency-Based Reordering

- Cagra reorganized source vertices based on frequency
 - Number of out-edges
- Higher frequency -> Faster higher level cache
- Cluster vertices with above average out degree
- Parallel stable sort
- Indices mapped
- Vertices updated in EdgeArray
- Tasks may spawn subtasks

Evaluation: Traffic between LLC and DRAM

- Segment Processing
 - Cagra reads in V source vertex data
 - Writes qV intermediate updates (q is average number of vertices adjacent to a segment)
 - Goes through all edges once
 - Incurs E + qV + V traffic total
- Cache-aware Merge
 - Reads all intermediate buffers (qV)
 - Writes V final values
 - Incurs qV + V traffic
- Total
 - In total, Cagra sees E + 2qV + V traffic to DRAM

Evaluation: Traffic between LLC and DRAM

Frameworks	Cagra	GridGraph	X-Stream	
Partitioned	1D-	2D Grid	Streaming	
Graph	segmented		Partitions	
	CSR			
Sequential	E + (2q+1)V	E + (P+2)V	3E + KV	
DRAM traffic				
Random	0	0	shuffle(E)	
DRAM traffic				
Parallelism	within 1D-	within 2D-	across many	
	segmented	partitioned	streaming	
	subgraph	subgraph	partitions	
Runtime	Cache-aware	E*atomics	shuffle and	
Overhead	merge		gather phase	

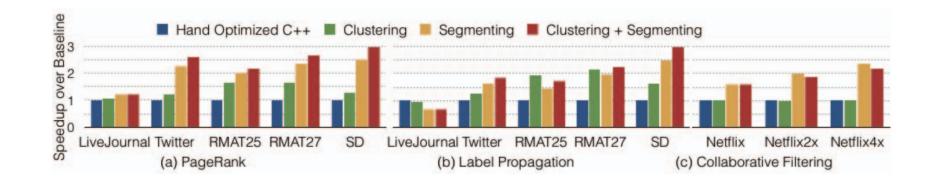
TABLE VII: Comparisons with other frameworks optimized for cache. E is the number of edges, V is the number of vertices, q is the expansion factor for our techniques, P is the number of partitions for GridGraph, K is the expansion factor for X-Stream. On Twitter graph, E=36V, q=2.3, P=32.

Evaluation: Comparison

- Experiments run on dual socket system with Intel Xeon E5-2695 v2 CPUs 12 cores for total of 24 cores and 48 hyperthreads
- 30 MB last level cache in each socket
- 128GB DDR3-1600 memory
- Transparent Huge Pages (THP) enabled

Evaluation: Speedup and Cache Misses

- CSR Segmenting
 - Saw more than 2x speedup in PageRank, Label Propagation and Collaborative Filtering
 - Eliminated random DRAM accesses
 - LLC miss rate dropped from 46% to 10% on Twitter graph



Open Questions

- A natural question that arises is how we can improve Cagra to be cache-oblivious in its merge algorithm