
Making Caches 
Work for Graph 

Analytics
By: Yunming Zhang, Vladimir Kiriansky, Charith 

Mendis, Saman Amarasinghe, Matei Zaharia

Presented By: Kevin Tong, MIT 6.506



What is Graph Analytics?
- Graph Analytics is a form of data 

analysis used in many fields 
(business, financial, biological, 
social networks, etc.).

- Computes information in graph 
networks.

- Examples: PageRank algorithm.



Caches Review
- Computer memory has many layers.
- The fastest access is in cache.
- The next fastest is main memory 

(DRAM).
- Software performance can be 

improved by utilizing the caches 
more.



Problem Overview
- There are many existing optimized 

graph frameworks
- GraphLab
- Ligra
- Galois
- GraphMat
- etc.

- The fastest frameworks have 
60-80% of cycles stalled on memory 
access to DRAM.



Problem Causes
- The cache is not optimized 

aggressively (Might be using L3 
cache and DRAM a lot, but not 
L1/L2).

- When we increase the number of 
cores, the performance does not 
scale well.

- The runtime overhead from 
running secondary computations 
is too high.



Problem Example: GridGraph
- Implementation:

- Organizes edges into “grid” (rows 
determine source vertex, columns 
indicate destination vertex)

- Computes data at vertex and streams 
to edges.

- Applies updates instantaneously from 
edge streams.

- Problems:
- Does not scale well beyond 4-6 cores 

due to cache contention



Problem Example: X-Stream
- Implementation

- Performs computations from the edges of the graph
- Keeps in-streams and out-streams partitioned to fit in cache to store updates
- Streams the updates to the update in-stream
- Shuffles the updates from the in-stream to corresponding destination out-streams
- Applies the updates from the out-streams to corresponding vertices

- Problem
- Incurs significant runtime overhead from shuffle and gather phase



Considerations
- Partition graph into smaller sections

- 2D grid
- Streaming Partitions

- Store in a certain data format
- Sorted compressed graph
- Unsorted edge list

- Exploit parallelism
- Across single partition
- Across multiple partitions

- Utilize entire cache system
- L1, L2, shared LLC

- Minimize overhead incurred



Solution: Cagra
- Cagra is a novel graph analytic framework
- Attains speed-up over 2 times faster than the fastest frameworks at the 

time

Cagra Performance on PageRank compared to other frameworks

�� ��



Solution: Cagra

Cagra Performance on Label Propagation compared to other frameworks



Solution: Cagra

Cagra Performance on Collaborative Filtering compared to other frameworks



Solution: Cagra

Cagra Performance on Between Centrality compared to other frameworks



Cagra Overview
1. Cagra divides graph into subgraphs through compressed sparse row (CSR) 

segmenting in preprocessing
2. Cagra processes subgraphs in parallel
3. Intermediate results are locally merged and stored in buffers
4. Parallel cache-aware merge is used to combine buffers within L1 cache



Compressed Sparse Row (CSR) Segmenting



Motivation: Page Rank
- Each vertex (destination) 

computes rank based on 
neighbors (sources)

- Common pattern seen in graph 
algorithms (Collaborative 
Filtering, Betweenness 
Centrality)



CSR Format
- vertexArray with O(V) length
- edgeArray with O(E) length
- Application-specific data in separate array

0 2 5 6

1 2 3 0 2 1 2 0

0 1

2 3

vertexArray

edgeArray



Problem: Random reads
- Each vertex, v, accesses 

neighbors, u
- Can’t predict u, so each read to 

rank and degree is random
- Bad use of cache



Illustration

Source Vertices

Destination Vertices
V1



CSR Segmenting
- Breaks up graph into cache-sized segments of vertex data (preprocessed)
- Performance is scalable across all cores
- Incurs low runtime overhead



Illustration

Source Vertices

Destination Vertices
V1



Preprocessing
- Breaks graph into several subgraphs based on segments
- Segments contain

- Idx map from local to global
- Intermediate buffer
- BlockIndices for merge



CSR Segmenting



Parallel Segment Processing
- Parallelism exploited on single large segment

- Threads share same working set
- More threads does not create cache contention

- In comparison to multiple smaller segments
- Smaller segment’s working set fit in L2 cache
- Merging overhead becomes bottleneck



Comparison with 2D Partitioning
- Cagra partitions only on source vertices
- Benefits:

- This produces less subgraphs, leading to better scalability when processing
- This leads to a faster merge since there are less subgraphs to merge in the end



Parallelism Across Vertices
- Parallelism only done across vertices, not within single vertex

- Takes advantage of CSR format
- No need for atomics for synchronization
- Updates to each vertex merged locally by same worker thread



Cache-aware Merge
- After computation, we need to merge results
- IntermBufs are merged into one dense output vector
- The buffers are accessed sequentially
- Range of Vertex IDs is divided into L1-cache-sized blocks



Cache-aware Merge Results
- The cache-aware merge algorithm has small runtime overhead



CSR Segmenting Results
- Improved cache utilization, accesses to DRAM sequential
- Scalability

- Threads can parallelize execution within subgraphs
- No need for atomic operations or synchronization
- Merge phase can be parallelized

- Low overhead
- Cache-aware merge requires little extra sequential memory accesses
- Merges in L1 cache in parallel
- Single sequential pass through edges

- Easy to use
- Applies to a large variety of algorithms



Segment Size Tradeoff
- As seen, the Cagra framework sees a tradeoff with segment size
- Smaller segments

- Fit into lower level cache
- Reduced random access latency
- Incur more overhead from merges for same destination

- Authors found sizing segments to fit in L3 cache led to best tradeoff



Frequency-Based Reordering
- Cagra reorganized source vertices based on frequency

- Number of out-edges

- Higher frequency -> Faster higher level cache
- Cluster vertices with above average out degree
- Parallel stable sort
- Indices mapped
- Vertices updated in EdgeArray
- Tasks may spawn subtasks



Evaluation: Traffic between LLC and DRAM
- Segment Processing

- Cagra reads in V source vertex data
- Writes qV intermediate updates (q is average number of vertices adjacent to a segment)
- Goes through all edges once
- Incurs E + qV + V traffic total

- Cache-aware Merge
- Reads all intermediate buffers (qV)
- Writes V final values
- Incurs qV + V traffic

- Total
- In total, Cagra sees E + 2qV + V traffic to DRAM



Evaluation: Traffic between LLC and DRAM



Evaluation: Comparison
- Experiments run on dual socket system with Intel Xeon E5-2695 v2 CPUs 

12 cores for total of 24 cores and 48 hyperthreads
- 30 MB last level cache in each socket
- 128GB DDR3-1600 memory
- Transparent Huge Pages (THP) enabled



Evaluation: Speedup and Cache Misses
- CSR Segmenting

- Saw more than 2x speedup in PageRank, Label Propagation and Collaborative Filtering
- Eliminated random DRAM accesses
- LLC miss rate dropped from 46% to 10% on Twitter graph



Open Questions
- A natural question that arises is how we can improve Cagra to be 

cache-oblivious in its merge algorithm


