GraphMineSuite August 2021

Enabling High-Performance and Programmable Graph Mining Algorithms with Set Algebra

Maciej Besta Zur Vonarburg

Deniz Sert April 6, 2023

Motivation: Not fast enough!

- Current solutions like GraphChallenge, SNAP, and Graph500 are slow when faced with repeated accesses
- CS scientists lack modern tool to evaluate and and construct high-performance graph mining algorithms

Solution: Use set algebra to improve efficiency and programmability

Table of contents

01

Defining Key Terms

03

Use Cases

02

GMS Overview

04

Closing Remarks

Set Algebra

Commutative property:

Associative property:

 $\bullet A \cup B = B \cup A$

 $\bullet A \cap B = B \cap A$

Mathematical Framework for manipulating sets

Identity:

 $\bullet A \cup \varnothing = A$ $\bullet A \cap U = A$

Complement:

 $\bullet A \sqcup A^C = U$

 $\bullet A \cap A^C = \emptyset$

De Morgan's laws:

- $\bullet (A \cup B)^C = A^C \cap B^C$
 - $\bullet (A \cap B)^C = A^C \cup B^C$

double complement or involution law:

 $\bullet \varnothing^C = U$

 $\bullet II^C = \varnothing$

 $\bullet (A^C)^C = A$

complement laws for the universe set and the empty set:

- Distributive property:
 - $\bullet A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $\bullet A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

 \bullet $(A \cup B) \cup C = A \cup (B \cup C)$

 \bullet $(A \cap B) \cap C = A \cap (B \cap C)$

Graph Mining

Extracting useful information from graph-structured data

- This is important in various fields like social networks, biology, recommendation systems, fraud detection, and transportation networks
- Techniques include pattern mining, clustering, classification, similarity analysis, and visualization

SAPP Framework

Set Algebraic Parallel Processing

- SAPP is a new parallel processing framework for graph mining using set algebra
 It is the subroutine for GraphMineSuite (GMS), the first benchmarking
- Properties include:

suite for graph mining algorithms

- Fast: Speeds up modern graph mining algorithms by up to 9x
- o Flexible: easily extended to new algorithms and operations
- Efficient: Built on top of set algebraic framework, allowing for efficient and expressive manipulation of graphs
- Scalable: Designed to handle graphs with billions of vertices and edges

SAPP Framework

Asymptotic Bounds

	<i>k-</i> Clique Listing <i>Node Parallel</i> [41]	<i>k-</i> Clique Listing <i>Edge Parallel</i> [41]	★ k-Clique Listing with ADG (§ 6)	ADG (Section 6)	Max. Cliques Eppstein et al. [51]	Max. Cliques Das et al. [42]	★ Max. Cliques with ADG (§ 7.3)	Subgr. Isomorphism Node Parallel [26, 40]	Link Prediction [†] , JP Clustering
	$O\left(mk\left(\frac{d}{2}\right)^{k-2}\right)$				\	$O\left(3^{n/3}\right)$	$O\left(dm3^{(2+\varepsilon)d/3}\right)$	$O\left(n\Delta^{k-1}\right)$	$O(m\Delta)$
Deptl	$h O\left(n + k\left(\frac{d}{2}\right)^{k-1}\right)$	$O\left(n+k\left(\frac{d}{2}\right)^{k-2}+\right)$	$+d^2$ $O\left(k\left(d+\frac{\varepsilon}{2}\right)^{k-2}+\log^2 n+d^2\right)$	$O\left(\log^2 n\right)$	$O\left(dm3^{d/3}\right)$	$O(d \log n)$	$O\left(\log^2 n + d\log n\right)$	$O\left(\Delta^{k-1}\right)$	$O(\Delta)$
Space	$O(nd^2 + K)$	$O\left(md^2+K\right)$	$O\left(md^2+K\right)$	O(m)	O(m + nd + K)	$O(m + pd\Delta + K)$	$O(m + pd\Delta + K)$	O(m+nk+K)	$O(m\Delta)$

d: graph degeneracy
K: output size
Delta: maximum degree
p: number of processors
k: number of vertices we're mining for
n: number of vertices in the graph that we're mining
m: number of edges in the graph

Work

Chiba/Nishizeki [21]

- Parallel Algorithms for Finding Large Cliques in Sparse Graphs
 - Gianinazzi, Besta,Shaffner
 - September 2021

Subgraph Isomorphism

Another Use Case for GMS

- Subgraph isomorphism is a problem in graph theory that involves determining whether a given pattern graph exists as a subgraph of a larger target graph
- Formally, given two graphs G and H, this problem asks whether there exists an injective function f from the vertices of H to the vertices in G s.t. if (u, v) is an edge in H, then (f(u), f(v)) is an edge in G.

More Acceleration with Work-Stealing

Sometimes, crime does pay!

Recall Cilk's work-stealing algorithm

GMS combines this concept with Feb '19 paper regarding general purpose subgraph isomorphism algorithm to increase its performance by 2.5x!

Stealing Frames

Workers operate on the bottom of the deque, while thieves try to steal work from the top of the deque.

 6.506 Algorithm Engineering Lecture 4: The Cilk Runtime System Alexandros-Stavros Iliopoulous February 16, 2023

Compare purple (baseline), grey and red lines (work stealing)

The 4-clique problem

GMS improvement in another popular graph problem

• The 4-clique problem is a graph problem that involves finding whether a graph contains a complete subgraph, or clique, or four nodes

 A clique is a subset of nodes in a graph s.t. every node in the subset is connected to every other node in the subset

Subtleties of Higher-Order Structure

Different types of graphs yield vastly different results

- Flickr, a photo sharing network, and Livemocha, a language-tutor matching app, have similar n, m, sparsity m/n, and degree distributions. But, 9 Billion and 4 Million 4-cliques, respectively!
- Why? In a social network of limited friendships, we expect 4-cliques to be only relatively common, whereas in photo sharing, we have metadata that very often link to other areas of the graph

Metadata Analysis

- Flickr: tags, descriptions, etc can be used to identify similar content, causing clusters of densely connected nodes
- Livemocha: language skills, proficiency levels, learning goals

Trade-Offs

Space complexity sometimes decreases for time increase

 Authors discuss the need to balance tradeoffs between work, depth, space, and approximation ratio

Example: recursive clique-searching: Naive searching algorithm work / space:

$$\Theta(n\Delta^{k-1})$$

After GMS and "Node Parallel" variant,

Work

$$\Theta(n+k(d/2)^{k-2}+d^2)$$

$$O(md^2)$$

Closing Remarks

Big advancements to graph mining, but a prototype?

Overviewed Set Algebra and technical details of GraphMineSuite

Overviewed GMS

- Discussed several insightful use cases
- My thoughts:
 - Big speedups of up to 9x speeds
 - o Better things to come?

It might soon be time to upgrade your iPhone (diy13 / Shutterstock)

iOS 17 could be leaving your old iPhone behind

In a couple of months we're expecting Apple to give us the lowdown on the iOS 17 update, and a reputable leaker says certain older devices won't be eligible for the update – devices including the iPhone 8, the iPhone 8 Plus and the iPhone X.

Read More

Thanks!

Questions?

Deniz Sert dsert@mit.edu

CREDITS: This presentation template was created by **Slidesgo**, and includes icons by **Flaticon**, and infographics & images by **Freepik**