ProbGraph: High-Performance and
High-Accuracy Graph Mining with Probabilistic
Set Representations

Authors: Maciej Bes t C Mgl oli, Paolo Sylos Labini, Jakub T etek, Patrick Iff,
Raghavendra K g I h As hkboo K acper Janda Michat Podstawski,
Grzegor. K wski, Niels Glei nig, Flavio Vella, Onu r Mutlu, Torsten Hoefler

Presented By: Collin Warl

Motivation

e Graph mining is slow
o Hard to parallelize since there exists little locality and irregularities in some graphs

e Useful to many problems in modern graphs

o Examples: Triangle Counting, Clique Counting, Vertex Similarity, Graph Clustering

Contributions

e Provides an approximate algorithm trading accuracy for speed
e Helps general class of graph problems requiring set intersections in their

routines.

e Approximation is tunable, and claims up to 50x speedups with up to 90%

daccuracy

Relative dif erence:

Data Review

e Claims appear to lack support in their data, there is high variance, and not a
clear link on how they get 98% or 90% accuracy claims.

0,
250 X0y — K0T, X0 4y — X071,) 0¥y — K0T, Real-world graphs Kronecker graphs
— X0 ¥lop ——|XVy —IXNYlop —IX1Y,y A e —IX0Vlop —XAVly 5 4-Clique Counting @CligueiCointing
) =z -
200% Shere 1.5 1.5 A ProbGraph (BF)
5 = O ProbGraph (MH)
150% a8 8 ¢ Exact
a’:.) o=
> G 2 i
100% .:?5.? 1.01@ 4, 3, 54 4 1.0 j}\ A
[T &) IR
%} [% %] %1 BEE @,\
=
o0 »m 0,5 e
- . A [Eﬁ l ! _oh + ; o&g 0
© O o N © © O O 5 o .G N © °© © @ 5 < 23> A ProbGraph (BF)
] §~2~ é? &@W ey ’Q@C"] \\Q@ & 0@“ & & x@? & & & p@d' \\32*\ & & & xa"}d. 55 Eb {1 ProbGraph (MH) g
& S & & RN S & & & S cfé & & & é’&& s & & 3% 00 v Exact 0.0L-2 === gy L
é& @0’& $=10%,b=1 &4“% @’& s=10%,b=4 @& «oo'& $=33%,b=1 56& ‘09'& 5=33%,b=4 ~ ~0 25 50 0 - 500
Each single data point corresponds to P z Relative memory: all
the execution of a given scheme for SPEEd up:vs baseline data points are clog to 1.0

Fig. 3: Analysis of the accuracy of PG estimators of | X NY. a single specific graph dataset

Additional Data Review

Relative count of a given pattern
(with respect to the exact count for a given specific input graph)

Real-world graphs
Triangle Counting Clustering (Jaccard) Clustering (Overlap) Clustering (Common Neigh.)
' \ ProbGraph (BF) =" ProbGraph (BF) | 1.5
ProbGraph (MH) [ProbGraph (MH)
0 4 09 5% Exact 2.0 Y¢ Exact
2 5] O A 1.0 éy,\ A
31 & 1115 g p— T]
A o 3 |
Bam O o E 1.0 A = =l
! ﬁlﬂ@m il 0 O H‘E 0.5)
Y aj . 0 G
ProbGraph (BF) = = 510.5 4 ProbGraph (BF)
() ProbGraph (MH) & %ﬁg{f}lx‘l‘é TCC 1 = E;:ZGraph (MH)
¢ Exact ? o W
0 0.0 0.0
L 0 20 0 20 40 0 25 50 0 50 100
Kronecker graphs
15 Triangle Counting Clustering (Jaccard) 15 Clustering (Overlap) 1 5Clustering (Common Neigh.)
: Data point where ' 2?;%82%;&2?,? :
O 2,0 glgéleve rililglory exceeds 1.25
O
txi
1.04+* A 1.5 1.0¢% L‘_“ MO - § 1.04% =
0o T mg g0
1.0{* A= =
0.5~ ProbGraph (BF) 0.5 0.5
[ProbGraph (MH)
¥¢ Exact 0.5{ ProbGraph (BF) A ProbGraph (BF) A ProbGraph (BF)
b (S:Zrlnglin "l;:C o ErobGraph (MH) E;(;bGraph (MH) g:;bcraph (MH)
: W Cct ct
0.0, ———2 L 0.0 : 0.0
0 10 20 1 0 20 40 0 50 0 20 40
Erchsinle ol comspont e spin, Speec-up vs baseline

Relative memory:[]

=
wn

1.25

=
=]

Overview

e Provide background on triangle counting to use as a motivating example
e Recognize a common subroutine in computation is set intersections
e Delve into Bloom Filters and MinHash approximation algorithms

e Show approximation algorithm given in ProbGraph

Triangle Counting

e Find all unique triples such that each pair of vertices shares and edge.
e Used to analyze real world graphs: cluster coefficient, spam filtering, find structure

e There is an n® algorithm: enumerate all triples and check

Triangle Counting

e Find all unique triples such that each pair of vertices shares and edge.
e Used in real-world graphs to figure out connectedness of a graph.

e There is an n® algorithm: enumerate all triples and check

Triangle Counting

e Find all unique triples such that each pair of vertices shares and edge.
e Used in real-world graphs to figure out connectedness of a graph.

e There is an n® algorithm: enumerate all triples and check

Triangle Counting

e Find all unique triples such that each pair of vertices shares and edge.
e Used in real-world graphs to figure out connectedness of a graph.

e There is an n® algorithm: enumerate all triples and check

Triangle Counting

e Find all unique triples such that each pair of vertices shares and edge.
e Used in real-world graphs to figure out connectedness of a graph.

e There is an n® algorithm: enumerate all triples and check

Triangle Counting

e Find all unique triples such that each pair of vertices shares and edge.
e Used in real-world graphs to figure out connectedness of a graph.

e There is an n® algorithm: enumerate all triples and check

Triangle Counting Faster Approach

e LetU, V be neighboring vertices and N, be the neighbors of x

e Then N, NN, /{U, V}are triangles

Triangle Counting Algorithm

/I Derive a vertex order R s.tif R(v) < R(u) thend <d_
forvE€ Vdo:N"={u &N |R(v)<R(u)}

tc=0
forv € V do:
foru € N " do:tc+=|N "N N 7|

e Letd be max degree and n be number of nodes
e Initial loop takes O(nd)
e Main loop takes O(nd?)

Triangle Counting Parallel Algorithm

/I Derive a vertex order R s.tif R(v) < R(u) thend <d_
forv € V[inpar]do: N "={u € N |R(v) < R(u)}

tc=0
for v € V [in par] do:
foru & N [in par] do: tc += [N "N N 7|

1 /* Input: A graph G. Output: Number of 4-cliques ck € N. %/

/Derive a vertex order R s.t. if R(v) < R(u) then dy < dy:
for v € V [in parl do: N} = {u € Ny|R(v) < R(u)}
ck = 0;
for w € V [in par] do:
for v € N¥ [in par] do:
C3 = N ﬁNJ’ //Find 3-cliques
for w € C3 do: //For each 3-clique..
ck += |Nj:ﬁC3| //Find 4-cliques

Other examples

e Clique Counting

Listing 2: Reformulated 4-Clique Counting.

e Vertex Similarity

/% Input: A graph G. Output: Number of 4-cliques ck € N. x/

1
2 /Derive a vertex order R s.t. if R(v) < R(u) then d, < dy:
3 for v € V [in par] do: N;r = {u € Ny|R(v) < R(u)}
ck = 0
for w €V [in par] do:
for v € N+ [in par] do:
C3 = NI ﬁN,j’ //Find 3-cliques
for w € C3 do: //For each 3-clique...

ck += |N$ﬁc’3| //Find 4-cliques

[

e Graph Clustering

© 0 o

Listing 2: Reformulated 4-Clique Counting.

/% Input: A graph G = (V, E). Output: Clustering C C E

* of a given prediction scheme. x/

//Use a similarity So(v,u) = |Ny O Nyl) (see Listing 3).

for e = (v,u) € E [in par] do: //7 is a user-defined threshold

if [Ny N Ny| >7: C U= {e}
//0ther clustering schemes use other similarity measures.

AU A W o —

Listing 4: Jarvis-Patrick clustering.

Bottleneck

X NY]|is slow

Common
neighbors
of @ and @
Adjacency list: Pc%i_nter? frt%m_
vertices to their
/ neighborhoods
] — 2 asn
2 =2 13456 -

Bl— 456709 -

ﬂ |Ny, N N,| traditionally

Ny and Ny, have similar size:

Bl—> 13456 -

I—>45679---/

_ Iterate through Ny and Ny,
[identifying common elements;
time complexity: O(|Ny| + I[Ny

Ny and Ny, differ much in size:

2l=> 13 4114-

I—>45679---/

N

N

Iterate over the elements of a smaller set
and use a binary search to check if each
element is in the bigger set as well;
time complexity: O(|N| log |N,/|)

How to make [X NY| faster?

e Trading some accuracy for speed

e Use of Bloom Filters and MinHash sets to approximate these intersections

Bloom Filter

2 hashes, L € [1, 3]

e Want space efficient/fast answering to membership queries

e False positives Inserta -> {1, 1}
° Bloom filter has L element bit vector BF =100
Insert b -> {3}
o Set of hashes, {h}, computes an integer in [1, L] BF =1 01

e Add Element
Now c -> {1, 3} would be “contained” although not
inserted

o Compute each hash, set corresponding bit to 1

° Retrieve Element

o Compute each hash, if all 1, return True

MinHash

e Takekhashes, h , h,,...h
e Compute hash for each element

e Keep values that produce the smallest per hash values

e \Variant (1-Hash): keep k smallest hash values using 1 hash function

{min {h.}, min {h,}, ..., min {h }} or {min {h}, min {h} / min {h}, ... }

Approximating Intersections

e Two Options:

o Take bitwise and of Bloom Filter and compute popcount

o Find intersection of smaller MinHash sets : .
|N., N N,,| with Bloom filters (BF)

2=> 13456 B> 45679 -

a bit

vector

™\ omomoo N ooooofd
Compute bitwise AND; BF size: B [bits]

time complexity: O(B /W) (user parameter)

ﬂ [N, N N,| with MinHash (1-Hash)
2|=> 13456 Bl=> 45679 -

MinHash '3 4 6 N 9/161Y

Compute standard intersection /
using MinHash sketches of sets;
time complexity: O(k)

1-Hash size: k [elements]
(user parameter)

Size of bloom filter (B), cache word size
(W), size of MinHash set (k)

ProbGraph Implementation

e Set a storage limit as a percentage of the graph size

e Now Bloom Filter and MinHash representations exist for the neighborsets of every node with
parameters chosen not to exceed this size limit.

e Choose what approximate algorithm you would like to use.

e \ery fast to compute as both approximations are much smaller than original neighbor sets.

1 //Input: Graph G, two vertices w and v

g . . . 2 //Create a standard CSR graph with G as the input graph

e Additionally BF is easily vectorized. 3 CSRGraph g = CSRGraph(G);
4 //Create a ProbGraph representation of G based on Bloom filters
5 ProbGraph pg = ProbGraph(g, BF, 0.25); //Use the 25% storage budget
6
7 //Derive the exact intersection cardinality |N, N Ny
8 int interEX = pg.int_card(g.N(u), g.N(v));
=

9 //Derive the estimator |Nu N Ny|anp
10 int interBF = pg.int_BF_AND(pg.N(u), pg.N(v));
il
12 //Compute the exact Jaccard coefficient between u and w
13 double jacEX = interEX / (g.N(u).size() + g.N(v).size() - interEX)
14 //Compute the approximate Jaccard coefficient based on BF
15 double jacBF = interBF / (g.N(u).size() + g.N(v).size() - interPG)

Listing 5: Obtaining exact and approximate Jaccard (see Listing 3)

Questions ?

