Log(Graph)

A Near-Optimal High Performance Graph Representation

Maciej Besta, Dimitri Stanojevic, Tijana Zivic, Jagpreet Singh, Maurice Hoerold, Torsten Hoefler

Presentation by: Eric Wang

What is Log(Graph)?

A Near-Optimal High Performance Graph Representation

Near-Optimal: Graph encoding approaches storage lower bounds High Performance: Enables fast operations/algorithms on graphs *Graph Representation:* Technique to store graph in computer memory

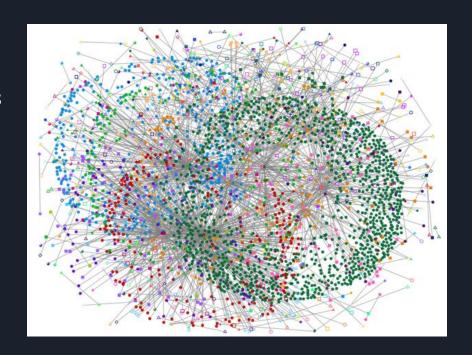
Implemented as a modular C++ library

Why do we need Log(Graph)?

- 1. Modern graphs are **huge**
- 2. Traditional graph representations are **inefficient** or waste space
- 3. Traditional compression is **slow**

Smaller Graph Representation:

- Enables better performance
- Consumes fewer hardware resources



If we have a set of S elements, how many bits do we need to store any given element?

If we have a set of S elements, how many bits do we need to store any given element?

 $\lceil \log(S) \rceil$

If we have a set of S elements, how many bits do we need to store any given element?

 $\lceil \log(S) \rceil$

If we have a n vertices in a graph, how many bits do we need to store any given vertex?

If we have a set of S elements, how many bits do we need to store any given element?

 $\lceil \log(S) \rceil$

If we have a n vertices in a graph, how many bits do we need to store any given vertex?

 $\lceil \log(n) \rceil$

We need $\lceil \log(n) \rceil$ bits to store a vertex if there are n vertices

Let's say in our graph we have n = 1024, so our vertices are 0, 1, 2, ... 1023

We need $\lceil \log(1024) \rceil = 10$ bits to store a given element

However, a memory word can be 32 or 64 bits! Meaning that we are wasting a lot of space potentially if we store these vertices many times

If we have a graph with n nodes and m edges, what is the theoretical storage lower bound?

$$\log \binom{\binom{n}{2}}{m}$$

Applying Lower Storage Bounds

Let's say $n = 2^40 = 1.09$ trillion vertices

We have our adjacency array:

. . .

Idea: Use 7 bits for 0's neighborhood, saving 25 * 33 = 825 bits

Applying Lower Storage Bounds

```
Our adjacency array:
```

```
0 | 2 3 5 7 11 ... 97 2^30 1 | ...
```

•••

Idea: Relabel the vertex with ID 2^30 to a smaller ID so we can use < 30 bits

Heuristic Examples

Our adjacency array:

```
0 | 2 3 5 7 11 ... 97 2^30
```

• • •

- Assign vertices that appear often smaller vertex IDs to leverage local storage bounds
- 2. Use ILP to minimize the maximum vertex IDs of neighborhoods

Technical Definitions

- Log(Graph) structure utilizes unique vertex IDs, an **adjacency array** (edgeArray), and an **offset array** (vertexArray)
- A **neighborhood** is an adjacency array for a single vertex
- A **permuter** is a function that relabels vertex IDs
- A **transformer** is a function that maps vertex IDs to bits, modifies AA
- A data structure is **compact** if it uses O(OPT) bits and **succinct** if it uses OPT + o(OPT) where OPT is the optimal # of bits

Technical Definitions

Graph model	G n, m $\mathcal{W}_{(v,w)}, D$ $d_v, N_v, N_{i,v}$ \overline{x}, \hat{x} $\alpha, \beta; p$	A graph $G=(V,E); V$ and E are sets of vertices and edges. Numbers of vertices and edges in $G; V =n, E =m$. The weight of an edge $\mathcal{W}_{(v,w)}$ and the diameter of G . Degree and neighbors and i th neighbor of a vertex $v; N_{0,v} \equiv v$. The average and the maximum among x . Parameters of a power-law graph and an Erdős-Rényi graph.
Machine model	$N \ H_i, H_{node} \ T, P, W \ \mathcal{T}_x$	The number of levels in a hierarchical machine. Total number of elements from level i and compute nodes. The number of threads/processes and the memory word size. Time to do a given operation x .
Adjacency array	$egin{aligned} \mathscr{A},\mathscr{A}_v \ \mathscr{O},\mathscr{O}_v \ \mathscr{A} , \mathscr{O} \ C[\mathscr{A}],C[\mathscr{O}] \ B,L \end{aligned}$	The adjacency array of a given graph and a given vertex. The offset structure of a given graph and an offset to \mathscr{A}_v . The sizes of \mathscr{A} , \mathscr{O} . Compression schemes acting upon \mathscr{A} , \mathscr{O} . Various parameters of \mathscr{A} and \mathscr{O} ; see § 4.3 for details.
Schemes for &	$egin{array}{c} \mathscr{P} \ \mathscr{T}_x, \mathscr{T} \ G_x \end{array}$	Permuter: function that relabels vertices. Transformers: functions that arbitrarily modify \mathscr{A} . Subgraphs of G constructed in recursive partitioning.

Log(Graph) Overview

Organized into three main components/modules:

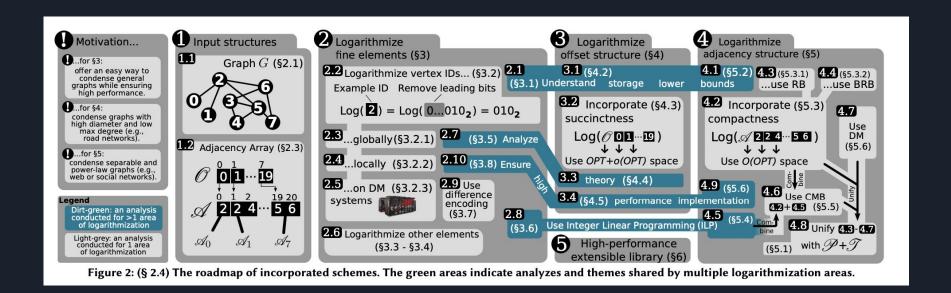
- 1. Logarithmize Fine Elements
- 2. Logarithmize **Offset Structure**
- 3. Logarithmize **Adjacency Structure**

Each component can take on numerous variants and be combined with other components to form many possible Log(Graph) implementations

\mathscr{O}	ID
Pointer array	ptrW
Plain [36]	bvPL
Interleaved [36]	bvIL
Entropy based [24, 66]	bvEN
Sparse [64]	bvSD
B-tree based [1]	bvBT
Gap-compressed [1]	bvGC

Table 4: (§ 4.3) Theore

Log(Graph) Overview



Log(Graph) Implementation

```
1 template < typename \mathcal{O}, typename \mathcal{C}[\mathcal{O}], typename \mathcal{I}>
 2 class GraphR : public BaseGraphR { // Class template.
      \mathscr{O}* offsets; C[\mathscr{O}]* compressor; \mathscr{I}* transformer; };
 5 template<typename \mathscr{O}, typename C[\mathscr{O}], typename \mathscr{T}> // Constructor.
 6 GraphR<\mathcal{O}, \mathcal{O}, \mathcal{I}>::GraphR(Permutation \mathcal{P}, AA* al) {
      al->permute(\mathscr{P}); // Note that \mathscr{P} is not a type.
      transformer = new \mathcal{I}(); transformer->transform(&al);
      offsets = new \mathcal{O}(al);
10
      compressor = new C[\mathcal{O}](); compressor -> compress(&offsets); }
11
12 template < typename \mathcal{O}, typename C[\mathcal{O}], typename \mathcal{I} >
13 v_id* GraphR<\mathcal{O}, C[\mathcal{O}], \mathscr{T}>::getNeighbors(v_id v) { // Resolve N_v.
     v_id offset = offsets->getOffset(v);
     v_id* neighbors = tr->decodeNeighbors(v, offset);
      return neighbors; }
```

Listing 3: (§ 6) A graph representation from the Log(Graph) library.

Accessing Values

```
Return i-th
neighbor of
                     Derive exact offset (in bits)
                                                              Pointer to the
                                              Pointer to the
 vertex v
                       to the neighbor label
                                                             adjacency array
                                                                             s = \lceil \log n \rceil
                                               offset array
1 /* v ID is an opaque type for IDs of vertices. */
                                                                                      Get the
  v_{ID} N_{iv}(v_{ID} v, int32_t i, int64_t * O, int64_t * A, int8_t s)
                                                                                    closest byte
     int64_t exactBitOffset = s * (O[v] + i);
                                                                                     alignment
     int8_t* address = (int8_t*) A + (exactBitOffset >> 3)
     int64_t distance = exactBitOffset & 7;
                                                               Get the distance from
     int64_t value = ((int64_t*) (address))[0];
                                                                 the byte alignment
     return _bextr_u64(value, distance, s);
    Shift the derived 64-bit value by d bits
                                                          Access the derived
          and mask it with BEXTR
                                                             64-bit value
```

The bextr operation consumes 2 CPU cycles and extracts a contiguous sequence of bits For each neighborhood, we simply store the bit length next to offset

Logarithmize Fine Elements

Fine elements are vertices and edges We can apply storage lower bounds to both

For vertex IDs, we can apply storage lower bounds globally based on n or locally based on the largest vertex in a neighborhood

For edges, we apply storage lower bounds globally or locally based on maximal edge weight

Vertex Id Example:

1 | ...

•••

Idea: Use 7 bits for 0's neighborhood

$$|\mathscr{A}| = \sum_{v \in V} \left(d_v \left\lceil \log \widehat{N}_v
ight
ceil + \left\lceil \log \log \widehat{N}_v
ight
ceil
ight)$$

Logarithmize Fine Elements Strategy #1

Incorporate ILP

Use ILP to reduce maximal IDs in as many neighborhoods as possible - maximal IDs are weighted based on inverse of neighborhood size

$$\min \ \sum_{v \in V} \widehat{N}_v \cdot \frac{1}{d_v}$$

Logarithmize Fine Elements Strategy #2

Incorporate Fixed-Size Gap Encoding

AA Structure: [a (b - a) (c - b)]

Maximum difference within a given domain determines number of bits used to encode - we can aim to minimize differences if the numbers themselves are very large but close in value

Logarithmize Fine Elements Strategy #3

Greedy Vertex Labeling

Sort vertices in non-decreasing order of their degrees - then, traverse the vertices in sorted order and assign smallest ID possible to vertex and neighborhood

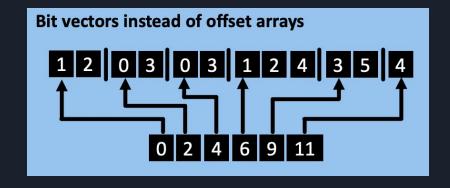
Used as a heuristic for ILP due to ILP being NP-hard

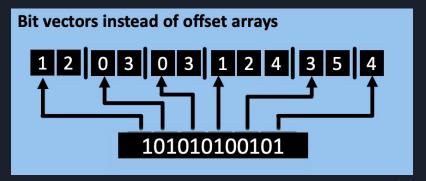
Logarithmize Offset Array - Bit Vector

Use A Bit Vector

Idea: Instead of storing the offsets in an array, we can use bit vectors to represent

If arr[i] == 1 and this is the jth set bit, then the neighborhood for vertex j starts at the ith block of AA



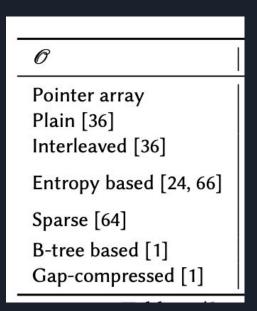


Logarithmize Offset Array - Bit Vector

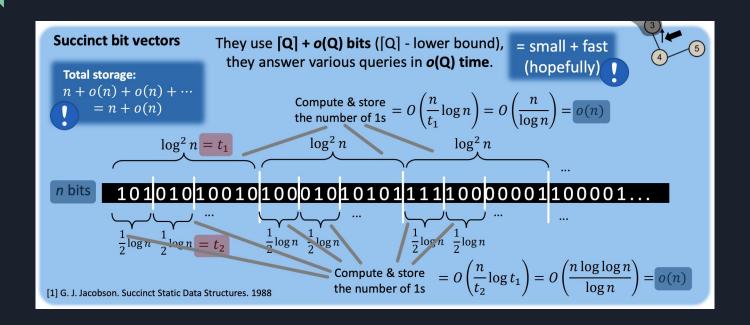
But ...

Using this bit vector can potentially be **very slow** if we have to iterate over it linearly to calculate

We can use an additional **o(n) space** in order to significantly speed up query operations on this bit vector, so the bit vector structure remains **succinct**



Succinct Bit Vector Example



Uses o(n) additional bookkeeping space to enable efficient select(x) and rank(x) queries

Logarithmize Adjacency Array

Techniques on Separable Graphs

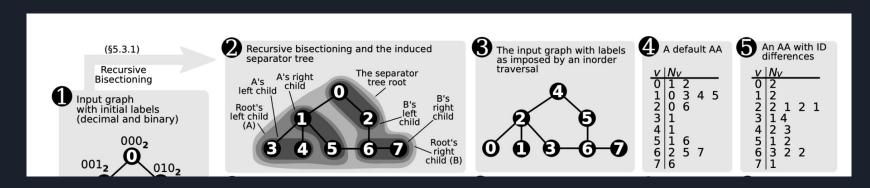
A graph is **separable** if we can divide a graph into two sets of vertices so that the size of the cut separating the vertices is much smaller than |V|

The two techniques we will examine are **Recursive Bisectioning** and **Binary Recursive Bisectioning**

Logarithmize Adjacency Array Strategy #1

Recursive Bisectioning: Relabel vertices to minimize differences between labels of consecutive neighbors

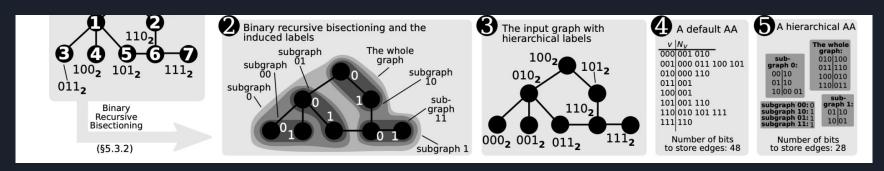
- 1. Bisect recursively on vertices/edges
- 2. Perform inorder traversal on resulting binary separator tree
- 3. Label vertices IDs with increasing values



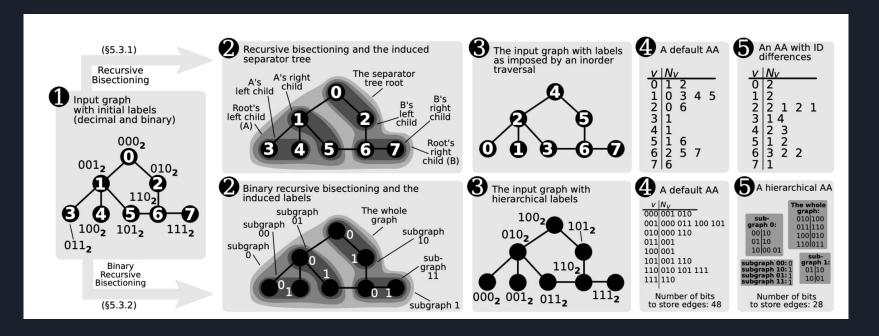
Logarithmize Adjacency Array Strategy #2

Binary Recursive Bisectioning: When bisecting recursively, label subgraphs with 0 or 1 appended to existing prefix - clusters will have large common prefixes

End up with a hierarchical AA that incurs less overhead than Recursive Bisectioning



RB vs BRB Comparison



Distributed Setting

We assume **hierarchical machines** where computation is distributed among them

We can divide a vertex ID into an **intra** part that is unique within a machine and an **inter** part that encodes the vertex in the distributed-memory structure

The **"intra-node**" vertex label thus takes [bits]: $\left[\log \frac{n}{H}\right]$

The "inter-node" vertex label is unique for a whole node and it takes [bits]: $\lceil \log H \rceil$

$$|\mathscr{A}| = n \left\lceil \log \frac{n}{H_{node}} \right\rceil + H_{node} \left\lceil \log H_{node} \right\rceil$$

$$|\mathscr{A}| = n \left\lceil \log \frac{n}{H_N} \right\rceil + \sum_{j=2}^{N-1} H_j \left\lceil \log H_j \right\rceil$$

Evaluation Example

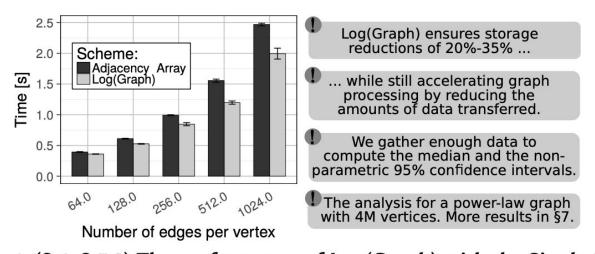


Figure 1: (§ 1, § 7.2) The performance of Log(Graph) with the Single Source Shortest Path algorithm when logarithmizing vertex IDs.

Evaluation Strategy

Examined algorithms in the **GAP benchmark suite** such as BFS, PageRank, SSSP, SSSP, Betweenness Centrality, Connected Components, and Triangle Counting

Compared Log(Graph) against **Zlib** (a traditional compression scheme), **Webgraph Library**, and other forms of **Recursive Partitioning**

Key Findings

- Logarithmizing fine elements reduces storage while ensuring
 high-performance
- Logarithmizing the offset array with succinct bit vectors **reduces the size of the offset array** while **matching performance** for higher thread counts
- Logarithmizing the adjacency array with DMd (degree-minimizing with differences encoded) offers a **strong space/performance tradeoff** as it trades a small amount of storage for faster access but is still very small
- If we have frequent accesses to neighbors, use RB if instead we have a large or constantly evolving graph, use BRB

Thoughts & Questions

- Overall, felt that Log(Graph) was a pretty cool paper
- Unfortunate that the C++ implementation has still not been released yet
- Paper overall does a good job of explaining concepts
- However, doesn't explain how Log(Graph) handles a graph that evolves quickly
- Possible directions for future work might be exploring how different component variants work with each other and if certain variants are specialized for certain graph types/properties

Any Questions?