Log(Graph)

A Near-Optimal High Performance
Graph Representation

Maciej Besta, Dimitri Stanojevic, Tijana Zivic, Jagpreet Singh,
Maurice Hoerold, Torsten Hoefler

Presentation by: Eric Wang

\ What is Log(Graph)?

A Near-Optimal High Performance Graph Representation

Near-Optimal: Graph encoding approaches storage lower bounds
High Performance: Enables fast operations/algorithms on graphs
Graph Representation: Technique to store graph in computer memory

Implemented as a modular C++ library

Why do we need Log(Graph)?

1. Modern graphs are huge

2. Traditional graph representations
are inefficient or waste space

3. 'Traditional compression is slow

Smaller Graph Representation:
- Enables better performance
- Consumes fewer hardware
resources

\ Understanding Lower Storage Bounds

If we have a set of S elements, how many bits do we need to store any given
element?

\ Understanding Lower Storage Bounds

If we have a set of S elements, how many bits do we need to store any given
element?

[log(S) 1

\ Understanding Lower Storage Bounds

If we have a set of S elements, how many bits do we need to store any given
element?

[log(S) 1

If we have a n vertices in a graph, how many bits do we need to store any
given vertex:

\ Understanding Lower Storage Bounds

If we have a set of S elements, how many bits do we need to store any given
element?

[log(S) 1

If we have a n vertices in a graph, how many bits do we need to store any
given vertex:

rlog(n)-|

\ Understanding Lower Storage Bounds

We need [log(n) 1bits to store a vertex if there are n vertices
Let’s say in our graph we have n = 1024, so our vertices are 0, 1, 2, ... 1023
We need [log(1024) | = 10 bits to store a given element

However, a memory word can be 32 or 64 bits! Meaning that we are wasting
a lot of space potentially if we store these vertices many times

\ Understanding Lower Storage Bounds

If we have a graph with n nodes and m edges, what is the theoretical
storage lower bound?

\ Applying Lower Storage Bounds

Let’s say n = 2740 = ~1.09 trillion vertices

We have our adjacency array:
0235711 .97
1] ..

Idea: Use 7 bits for 0’s neighborhood, saving 25 * 33 = 825 bits

10

\ Applying Lower Storage Bounds

Our adjacency array:
0235711 .. 97 2730
1| ..

Idea: Relabel the vertex with ID 2230 to a smaller ID so we can use <
30 bits

11

\ Heuristic Examples

Our adjacency array:
0|235711 .. 97 2730
1| ..

1. Assign vertices that appear often smaller vertex IDs to leverage local
storage bounds

2. Use ILP to minimize the maximum vertex IDs of neighborhoods

12

\ Technical Definitions

- Log(Graph) structure utilizes unique vertex IDs, an adjacency array
(edgeArray), and an offset array (vertexArray)

- A neighborhood is an adjacency array for a single vertex

- A permuter is a function that relabels vertex IDs

- A transformer is a function that maps vertex IDs to bits, modifies AA

- A data structure is compact if it uses O(OPT) bits and succinct if it
uses OPT + o(OPT) where OPT is the optimal # of bits

13

\ Technical Definitions

Graph model

Machine
model

>
g >
=T°
<

for of

Schemes

S O
~

G

n,m
We.w), D
dvi\er Ni,v
X, X

B p

N

Hi/ Hnode
T,P,W

Tx

oA, Ay
0,0,

A graph G = (V,E); V and E are sets of vertices and edges.
Numbers of vertices and edges in G; |V| =, |E| = m.

The weight of an edge W, ,,) and the diameter of G.

Degree and neighbors and ith neighbor of a vertex v; Ny, = v.
The average and the maximum among x.

Parameters of a power-law graph and an Erdés-Rényi graph.

The number of levels in a hierarchical machine.

Total number of elements from level i and compute nodes.
The number of threads/processes and the memory word size.
Time to do a given operation x.

The adjacency array of a given graph and a given vertex.
The offset structure of a given graph and an offset to <7,.
The sizes of &, O.

Compression schemes acting upon &7, ©.

Various parameters of 2/ and O; see § 4.3 for details.

Permuter: function that relabels vertices.
Transformers: functions that arbitrarily modify <.
Subgraphs of G constructed in recursive partitioning.

Table 1: Symbols used in the paper.

14

\ Log(Graph) Overview

Organized into three main components/modules:
1. Logarithmize Fine Elements

2. Logarithmize Offset Structure

3. Logarithmize Adjacency Structure

Each component can take on numerous variants and
be combined with other components to form many

possible Log(Graph) implementations

Pointer array
Plain [36]
Interleaved [36]

Entropy based [24, 66]

Sparse [64]

B-tree based [1]
Gap-compressed [1]

\ Log(Graph) Overview

0 Motivation... @ Input structures @ Logarithmize @ Logarithmize @ Logarithmize
fine elements (§3 offset structure (§4 adjacency structure (§5)
@.fors3: Graph G (§2.1) 83) X . (84)]
°f:§r::e"n§gsge‘:\’g¥a}° -Logarlthmlze vertex IDs... (§3.2) 3.1/(54.2) Y (L)) (%) (s5.3.1) C®Y(s5.3.2)
grﬁizf;‘spv;r#’lbe"ggi\érei?g Example ID Remove/leadlng bits (§3.1) Understand storage lower bounds ...use RB ...use BRB

A 3.2 4.2
.o sa: Log(Hl) = Log(0010,) = 010, 3.2} Incorporate (§4.3) (4.2) Incorporate (§5.3)

condense graphs with i
high diamegterpand oW succinctness com pactness

max degree (e?., 2.7 L 7>
road networks). %) _globally(§3.2.1 3.5) Analyze og(0'EA--E) Wolo[@=742 12 4385 6)
@..or 55 Adjacency Array (§2.3) 2 Y) 52.0) = vy d v UV

Co idonsc senarable and 01 7 2.4 ST W¥3) - 1 0.(63.8) Ensure Use OPT+0(OPT) space Use O(OPT) space

power-law graphs (e.g.,

web or social networks) ﬁ pp@' mon oM (5323) Use 5 (§5 6) m l
U

CRgad 19 20 systems g;‘fz%rdeirr\‘cge 3.4 (§4.5) performance Implementatio ™ +C';’|§BS 5)
Dirt-green: an analysis % (§3.7) '
o ica o aton : ify C90-
Logarithmize other elements S=unily) o

Lj:%w&az%giiafgrafg%sais C/(,,Cf'"l (§3.3 - §3.4) 6 ngh-performance (§5.1) with (@4_{0]‘
extensible library (§6)

of logarithmization
Figure 2: (§ 2.4) The roadmap of incorporated schemes. The green areas indicate analyzes and themes shared by multiple logarithmization areas.

16

template<typename &, typename C[&], typename >
class GraphR : public BaseGraphR { // Class template.
Ox offsets; C[O]x compressor; Z* transformer; };

template<typename &, typename C[&], typename &> // Constructor.
GraphR<@, C[O], T >::GraphR(Permutation 22, AAx al) {
al->permute(£?); // Note that &2 is not a type.
transformer = new & (); transformer->transform(&al);
offsets = new € (al);

compressor = new C[ﬁ](); compressor ->compress (&offsets); }

template<typename &, typename C[&], typename >

v_idx GraphR<&, C[€]|, T >::getNeighbors(v_id v) { // Resolve Nyp.
v_id offset = offsets->getOffset(v);
v_idx neighbors = tr->decodeNeighbors(v, offset);
return neighbors; }

Listing 3: (§ 6) A graph representation from the Log(Graph) library.

Implemented as C++ Library - templates are used for performance reasons and to control complexity

17

Return i-th

neighbor of Derive exact offset (in bits)

: Pointer to the Pointer to the
vertex v to the neighbor label

offset array adjacency array s = [logn]

x/ Get the
v_ID WNjg(v_ID(®@, int32_t(#,) in¥64_t* (O, int64_tx (A, int8_t(8){ closest byte
int64_t exactBitOffset =@ * (O[v] + D); alignment
int8_t* address = (int8_tx*) (A + (exactBitOffset >> 3);
int64_t distance = @XxactBitOffset & 7, =
. .
int64_t value = ((int64_tx*) ((address))[0]; Get the distance from

: th li t
return _bextr_u64(value, distance, s); } e byte alignmen

Shift the derived 64-bit value by d bits / Access the derived
and mask it with BEXTR 64-bit value

The bextr operation consumes 2 CPU cycles and extracts a contiguous sequence of bits

For each neighborhood, we simply store the bit length next to offset

18

\ Logarithmize Fine Elements

Fine elements are vertices and edges
We can apply storage lower bounds to both

For vertex IDs, we can apply storage lower
bounds globally based on n or locally based on

the largest vertex in a neighborhood

For edges, we apply storage lower bounds

globally or locally based on maximal edge weight

Vertex Id Example:
0235711 ..97
1| ..

Idea: Use 7 bits for 0’s
neighborhood

7| =) (dv [log/l\?vw + [loglog/l\?z,b

veV

19

\ Logarithmize Fine Elements Strategy #1

Incorporate ILP

Use ILP to reduce maximal IDs in as many neighborhoods as possible -

maximal IDs are weighted based on inverse of neighborhood size

20

\ Logarithmize Fine Elements Strategy #2

Incorporate Fixed-Size Gap Encoding
AA Structure: [a (b-a) (c-Db)]

Maximum difference within a given domain determines number of
bits used to encode - we can aim to minimize differences if the

numbers themselves are very large but close in value

21

\ Logarithmize Fine Elements Strategy #3

Greedy Vertex Labeling

Sort vertices in non-decreasing order of their degrees - then, traverse the
vertices in sorted order and assign smallest ID possible to vertex and

neighborhood

Used as a heuristic for ILP due to ILP being NP-hard

22

\ Logarithmize Offset Array - Bit Vector

Bit vectors instead of offset arrays

Use A Bit Vector |ﬂ| | ?n ?

Idea: Instead of storing the offsets in an 0]2]a]6]9]11]

array, we can use bit vectors to represent

Bit vectors instead of offset arrays

If arr[i] == 1 and this is the jth set | lo[3[{1]2]a]|3]s]
bit, then the neighborhood for vertex

j starts at the ith block of AA 101010100101

\ Logarithmize Offset Array - Bit Vector

But...

Using this bit vector can potentially be very slow if

we have to iterate over it linearly to calculate

We can use an additional o(n) space in order to
significantly speed up query operations on this bit

vector, so the bit vector structure remains succinct

Pointer array
Plain [36]
Interleaved [36]

Entropy based [24, 66]

Sparse [64]
B-tree based [1]
Gap-compressed [1]

24

Succinct Bit Vector Example

Succinct bit vectors They use [Q] + 0(Q) bits ([Q] - lower bound), PRSI
th i ies in o(Q) time.
r— ey answer various queries in o(Q) ti (hopefully) !

n+om)+on)+ - c i n n
— ompute & store _ " _ N
! nto(n) the number of 1s — 0 (tl logn> = <log n) - o(n)

log?n =ty log?n log?n

/—/%

] 101/010/10010[100010/101011111[10000001[100001...
—log7 Zlngn =t; Elogn -Zlogn Elogn Elogn

2
Compute & store _ 0 (ﬁlog t1> =0 <n loglogn) = o(n)

[1] G. J. Jacobson. Succinct Static Data Structures. 1988 the number of 1s t2 lOg n

Uses o(n) additional bookkeeping space to enable efficient select(x) and rank(x) queries

25

\ Logarithmize Adjacency Array

Techniques on Separable Graphs

A graph is separable if we can divide a graph into two sets of vertices so

that the size of the cut separating the vertices is much smaller than |V

The two techniques we will examine are Recursive Bisectioning and

Binary Recursive Bisectioning

26

Logarithmize Adjacency Array Strategy #1

Recursive Bisectioning: Relabel vertices to minimize differences between labels of
consecutive neighbors

1. Bisect recursively on Vertices/edges

2. Perform inorder traversal on resulting binary separator tree

3. Label vertices IDs with increasing values

(§5.3.1) @ Recursive bisectioning and the induced @ The input graph with labels @ A default AA 6 An AA with ID
separator tree as imposed by an inorder differences
Recursive . traversal
Bisectioning A's A.Shr‘ll%ht Thcterzgprg:)attor
left child "

0 Input graph

with initial labels Root's

(decimal and binary) left(f\;lild

Root's
right
child (B)

NOUIRWNKFQOIK
NOUIAWN K OIK

27

\ Logarithmize Adjacency Array Strategy #2

Binary Recursive Bisectioning: When bisecting recursively, label subgraphs with 0 or 1

appended to existing prefix - clusters will have large common prefixes

End up with a hierarchical AA that incurs less overhead than Recursive Bisectioning

2 Binary recursive bisectioning and the 3 The input graph with @ A default AA 5 A hierarchical AA
induced labels hierarchical labels e unot

subgraph The whole
subgraph - graph s gio 108
\ 1002 1012 1112 00 N subgraph \ "" " 10(1”1)10

: 10 0110
011, am” N \ Solog gy 1roloi

Binary A R 5 / subgraph 00:0 graph 1:
Recursive | 1 e *oift
Bisectioning ’ : i \ subgraph u

000, 001 Number of bits Number of bits
2 2 0112 to store edges: 48 to store edges: 28

(85.3.2) : subgraph 1

\ RB vs BRB Comparison

(§5.3.1) Recursive bisectioning and the induced @ The input graph with labels @ A default AA 6 An AA with ID
separator tree as imp%sed by an inorder differences
Recursive L Ti traversal
Bisectioning As A'sright hcter(segpr%:)attor

left child P14 <
Input graph . ! . i
with initial labels Root's : gl
(decimal and binary) left(f\;llld 7 :
: S right

child (B)

v
0
1
2
3
4
5
6
7

@ Binary recursive bisectioning and the 8 The input graph with
induced labels hierarchical labels
subgraph The wht?le
01 grap
\ 100, 101, 5”“85"‘"“ sub%aph | 010|000 110

011, sub%raph 10/00 01

A ! 101/001 110 FHRERBONE

Binary / :
Recursive / . 31 L10j010H 0T L subgraph 01: 1
Bisectioning subgraph 11:1

N Number of bits Number of bits
(§5.3.2) subgraph 1 to store edges: 48 to store edges: 28

\ Distributed Setting

The ,intra-node” vertex n
label thus takes [bits]: [108 EI

The ,inter-node” vertex
label is unique for a whole
node and it takes [bits]: [log H]

We assume hierarchical machines
where computation is distributed

among them

n

|‘Qf| =n [108 -‘ + Hyoge [log Hnode-|

We can divide a vertex ID into an intra nod

part that is unique within a machine
and an inter part that encodes the
vertex in the distributed—memory

structure

Evaluation Example

o Log(Graph) ensures storage
Scheme reductions of 20%-35% ...

Adjacenc Array
5 . .. while still accelerating graph

Log(Graph)
processing by reducing the
amounts of data transferred.
® We gather enough data to

compute the median and the non-
parametric 95% confidence intervals.

I]l]l]

\'?" @56' 6' R\ al

N ®he analysis for a power-law graph

with 4M vertices. More results in §7.
Number of edges per vertex

Figure 1: (§ 1, § 7.2) The performance of Log(Graph) with the Single Source
Shortest Path algorithm when logarithmizing vertex IDs.

31

\ Evaluation Strategy

Examined algorithms in the GAP benchmark suite such as BFS,
PageRank, SSSP, SSSP, Betweenness Centrality, Connected

Components, and Triangle Counting

Compared Log(Graph) against Zlib (a traditional compression scheme),
Webgraph Library, and other forms of Recursive Partitioning

32

\ Key Findings

Logarithmizing fine elements reduces storage while ensuring
high-performance

Logarithmizing the offset array with succinct bit vectors reduces the size of the
offset array while matching performance for higher thread counts
Logarithmizing the adjacency array with DMd (degree-minimizing with
differences encoded) ofters a strong space/performance tradeoff as it trades a
small amount of storage for faster access but is still very small

If we have frequent accesses to neighbors, use RB - if instead we have a large or

constantly evolving graph, use BRB
33

\ Thoughts & Questions

Overall, felt that Log(Graph) was a pretty cool paper
- Unfortunate that the C++ implementation has still not been released yet
- Paper overall does a good job of explaining concepts
- However, doesn’t explain how Log(Graph) handles a graph that evolves quickly
- Possible directions for future work might be exploring how different component

variants work with each other and if certain variants are specialized for certain

graph types/properties

Any Questions?
34

