
Log(Graph)
A Near-Optimal High Performance
Graph Representation
Maciej Besta, Dimitri Stanojevic, Tijana Zivic, Jagpreet Singh,
Maurice Hoerold, Torsten Hoefler

Presentation by: Eric Wang

1

What is Log(Graph)?

A Near-Optimal High Performance Graph Representation

Near-Optimal: Graph encoding approaches storage lower bounds
High Performance: Enables fast operations/algorithms on graphs
Graph Representation: Technique to store graph in computer memory

Implemented as a modular C++ library

2

Why do we need Log(Graph)?

1. Modern graphs are huge
2. Traditional graph representations

are inefficient or waste space
3. Traditional compression is slow

Smaller Graph Representation:
- Enables better performance
- Consumes fewer hardware

resources
 3

Understanding Lower Storage Bounds

If we have a set of S elements, how many bits do we need to store any given
element?

4

Understanding Lower Storage Bounds

If we have a set of S elements, how many bits do we need to store any given
element?

⌈log(S)⌉

5

Understanding Lower Storage Bounds

If we have a set of S elements, how many bits do we need to store any given
element?

⌈log(S)⌉

If we have a n vertices in a graph, how many bits do we need to store any
given vertex?

6

Understanding Lower Storage Bounds

If we have a set of S elements, how many bits do we need to store any given
element?

⌈log(S)⌉

If we have a n vertices in a graph, how many bits do we need to store any
given vertex?

⌈log(n)⌉
7

Understanding Lower Storage Bounds

We need ⌈log(n)⌉ bits to store a vertex if there are n vertices

Let’s say in our graph we have n = 1024, so our vertices are 0, 1, 2, … 1023

We need ⌈log(1024)⌉ = 10 bits to store a given element

However, a memory word can be 32 or 64 bits! Meaning that we are wasting
a lot of space potentially if we store these vertices many times

8

Understanding Lower Storage Bounds

If we have a graph with n nodes and m edges, what is the theoretical
storage lower bound?

9

Applying Lower Storage Bounds

Let’s say n = 2^40 = ~1.09 trillion vertices

We have our adjacency array:
0 | 2 3 5 7 11 … 97
1 | …
…

Idea: Use 7 bits for 0’s neighborhood, saving 25 * 33 = 825 bits

10

Applying Lower Storage Bounds

Our adjacency array:
0 | 2 3 5 7 11 … 97 2^30
1 | …
…

Idea: Relabel the vertex with ID 2^30 to a smaller ID so we can use <
30 bits

11

Heuristic Examples

Our adjacency array:
0 | 2 3 5 7 11 … 97 2^30
1 | …
…

1. Assign vertices that appear often smaller vertex IDs to leverage local
storage bounds

2. Use ILP to minimize the maximum vertex IDs of neighborhoods
12

Technical Definitions

- Log(Graph) structure utilizes unique vertex IDs, an adjacency array
(edgeArray), and an offset array (vertexArray)

- A neighborhood is an adjacency array for a single vertex
- A permuter is a function that relabels vertex IDs
- A transformer is a function that maps vertex IDs to bits, modifies AA
- A data structure is compact if it uses O(OPT) bits and succinct if it

uses OPT + o(OPT) where OPT is the optimal # of bits

13

Technical Definitions

14

Log(Graph) Overview

Organized into three main components/modules:
1. Logarithmize Fine Elements
2. Logarithmize Offset Structure
3. Logarithmize Adjacency Structure

Each component can take on numerous variants and
be combined with other components to form many
possible Log(Graph) implementations

15

Log(Graph) Overview

16

Log(Graph) Implementation

Implemented as C++ Library - templates are used for performance reasons and to control complexity
17

Accessing Values

The bextr operation consumes 2 CPU cycles and extracts a contiguous sequence of bits
For each neighborhood, we simply store the bit length next to offset 18

Logarithmize Fine Elements

Fine elements are vertices and edges
We can apply storage lower bounds to both

For vertex IDs, we can apply storage lower
bounds globally based on n or locally based on
the largest vertex in a neighborhood

For edges, we apply storage lower bounds
globally or locally based on maximal edge weight

Vertex Id Example:
0 | 2 3 5 7 11 … 97
1 | …
…

Idea: Use 7 bits for 0’s
neighborhood

19

Logarithmize Fine Elements Strategy #1

Incorporate ILP

Use ILP to reduce maximal IDs in as many neighborhoods as possible -
maximal IDs are weighted based on inverse of neighborhood size

20

Logarithmize Fine Elements Strategy #2

Incorporate Fixed-Size Gap Encoding

AA Structure: [a (b - a) (c - b)]

Maximum difference within a given domain determines number of
bits used to encode - we can aim to minimize differences if the
numbers themselves are very large but close in value

21

Logarithmize Fine Elements Strategy #3

Greedy Vertex Labeling

Sort vertices in non-decreasing order of their degrees - then, traverse the
vertices in sorted order and assign smallest ID possible to vertex and
neighborhood

Used as a heuristic for ILP due to ILP being NP-hard

22

Logarithmize Offset Array - Bit Vector

Use A Bit Vector

Idea: Instead of storing the offsets in an
array, we can use bit vectors to represent

If arr[i] == 1 and this is the jth set
bit, then the neighborhood for vertex
j starts at the ith block of AA

23

Logarithmize Offset Array - Bit Vector

But …

Using this bit vector can potentially be very slow if
we have to iterate over it linearly to calculate

We can use an additional o(n) space in order to
significantly speed up query operations on this bit
vector, so the bit vector structure remains succinct

24

Succinct Bit Vector Example

Uses o(n) additional bookkeeping space to enable efficient select(x) and rank(x) queries
25

Logarithmize Adjacency Array

Techniques on Separable Graphs

A graph is separable if we can divide a graph into two sets of vertices so
that the size of the cut separating the vertices is much smaller than |V|

The two techniques we will examine are Recursive Bisectioning and
Binary Recursive Bisectioning

26

Logarithmize Adjacency Array Strategy #1

Recursive Bisectioning: Relabel vertices to minimize differences between labels of
consecutive neighbors
1. Bisect recursively on vertices/edges
2. Perform inorder traversal on resulting binary separator tree
3. Label vertices IDs with increasing values

27

Logarithmize Adjacency Array Strategy #2

Binary Recursive Bisectioning: When bisecting recursively, label subgraphs with 0 or 1
appended to existing prefix - clusters will have large common prefixes

End up with a hierarchical AA that incurs less overhead than Recursive Bisectioning

28

RB vs BRB Comparison

29

Distributed Setting

We assume hierarchical machines
where computation is distributed
among them

We can divide a vertex ID into an intra
part that is unique within a machine
and an inter part that encodes the
vertex in the distributed-memory
structure

30

Evaluation Example

31

Evaluation Strategy

Examined algorithms in the GAP benchmark suite such as BFS,
PageRank, SSSP, SSSP, Betweenness Centrality, Connected
Components, and Triangle Counting

Compared Log(Graph) against Zlib (a traditional compression scheme),
Webgraph Library, and other forms of Recursive Partitioning

32

Key Findings

- Logarithmizing fine elements reduces storage while ensuring
high-performance

- Logarithmizing the offset array with succinct bit vectors reduces the size of the
offset array while matching performance for higher thread counts

- Logarithmizing the adjacency array with DMd (degree-minimizing with
differences encoded) offers a strong space/performance tradeoff as it trades a
small amount of storage for faster access but is still very small

- If we have frequent accesses to neighbors, use RB - if instead we have a large or
constantly evolving graph, use BRB

33

Thoughts & Questions

- Overall, felt that Log(Graph) was a pretty cool paper
- Unfortunate that the C++ implementation has still not been released yet
- Paper overall does a good job of explaining concepts
- However, doesn’t explain how Log(Graph) handles a graph that evolves quickly
- Possible directions for future work might be exploring how different component

variants work with each other and if certain variants are specialized for certain
graph types/properties

Any Questions?
34

