Locality Analysis of Graph
Reordering Algorithms

By Mohsen Koohi Esfahani, Peter Kilpatrick, Hans
Vandierendonck

Presented by Nick Dow

Problem: Graphs traversal is not sequential!

- Structure of graphs make vertex data
accesses essentially random as any
vertex can have an edge to any other.

- Recall the hierarchical memory model:
random accesses are bad for cache.

- More caches misses means algorithms
take more time to compute.

- Is there a way to improve these random
accesses?

Primary
Storage

Faster Access

1 cycle

Cache ~10 cycles

/ Main Memory \100 cycles

Higher Capacity ~1 M cycles
Flash Disk

/

~10 M cycles
Traditional Disk

/ Remote Secondary Storage (e.g., Internet) \

The Memory Hierarchy

The Solution: Reordering Algorithms(RAS)

. . Dataset Time (ms)

- The Idea: Relabel the vertices to give Bl | sB | Go | RO
vertex data accesses better locality. WebB 0 | 145 | 89 | 79
. TwtrMpi 354 339 299 | 366
- RAs are experimentally shown to Frndstr || 771 | 761 | 578 | 667
increase performance and lower cache BAS e L
. WbCc 438 414 311 | 297
misses on some graphs. UKDIs 194 | 317 180
Uu 282 486 285
But RAs make performance worse on U 297 | 450 .

others...why? awby || 2221 | 2811

- There is little understanding of how RAs
affect the structure of graphs

Above: RA graph performance

The Solution to The Solution: Analysis!

- We want to find the “why” of how RAs works across different RAs and
graph types.
- Key Questions:

How much locality do natural graphs already have?

How do different RAs affect that initial locality?

For what types of locality are the graphs improved?

What vertices get better locality (LDV vs. HDV; in-hubs vs. out-hubs)?

- Apply these ideas to choose appropriate RAs and even modify them

Contributions

Locality types in a parallel graph traversal

Introducing the Neighbour to Neighbour Average ID Distance (N2N AID)
Using degree distributions to study impacts of RAs on vertex classes,
Degree range decomposition and degree distribution of asymmetricity to
provide structural analysis of different graph types

e How locality manifests itself differently in a push traversal vs a pull
traversal.

Overview:

o a A w0 dp =

Background on Core Concepts

Description and Demonstration of Studied RAs
Introduced Analytical Tools

Analysis of RAs on cache
Analysis of natural graphs and traversal order on cache

Suggested Improvements of RAs based on analysis

Background

Concepts

Graph Structure:

Natural graphs have
power law degree
distributions.

This means they have
few well-connected
high degree vertices
(HDV) and many low
degree vertices (LDV)
Hubs are HDV with
edges greater than
square root of |V|

Example Natural Graph

Power Law Distribution

Representation: Adjacency Arrays

- Core idea: Have each vertex have a list of its neighbors in order of ID.
- For directed graphs, this list can be in-neighbors or out-neighbors

c: [3] 0,23 [3][2]23]
0 2 3 4 5 6 7

Compressed Sparse Column(CSC):
- Vertex ID indexes into a list of
the vertex's in-neighbors.

R: [0]1]4]5]5]6]|

0o 1 2 3 4 5

Example of CSR

Compressed Sparse Row(CSR):
- Vertex ID indexes into a list of
the vertex’'s out-neighbors

Graph Traversal - SpMV

Algorithm 1: SpMV graph traversal
Input: G(V, E), D!

- SpMV can go in pull or push direction

depending on representation (CSC v. Output: D!
1 forv eV do
CSR) 2 sum = 0;
- Cache |Oca|ity- 3 for u € v.neighbours do
' 4 | sum +=D*[u];
- Edge data (topological) is only read once. s | end
- Vertex data is reused many times dependent ¢ dD’“[v] = sum;
7 en

on the vertex’s in or out degree.
- Pull - randomly access old in-neighbors
- Push — randomly access new out-neighbors

Reordering

Algorithms

RA Example: Slash-Burn

Intuition: Imagine the graph as consisting of hubs of HDV and spokes off the hubs, and the
hubs being spokes of larger hubs and so on recursively.

- This structure stems from the power law properties of natural graphs.
- Theoretically gives better locality for the spokes of the graph.

(k-hulset) (GCC) (spokes1) (spokes2)

(k-hubset)~

(GCC)

(spokes1)

(spokes2)

(a) AS-Oregon after 1 iteration

(b) .. after 1 more iteration

(c) .. after 1 more iteration

GCC
2-8

(a) Before SLASHBURN (b) After SLASHBURN

Slash-Burn Pseudocode

- K-hubset - a set of k Algorithm 1: SLASHBURN
. . Input: Edge set of a graph G = (V. E),
candidate hub vertices. P conseant k (defaulr =). G=W.5)

- i Output: Array I' containing the ordering V' — [n].
Giant Connected Component 1: Remove k-hubset from G to make the new graph G'. Add

- the Iargest spoke to be the removed k-hubset to the front of I'.
. 2: Find connected components in G'. Add nodes in
recurswely broken down. non-giant connected components to the back of T', in the
decreasing order of sizes of connected components they
belong to.

3: Set (& to be the giant connected component (GCC) of G".
Go to step 1 and continue, until the number of nodes in
the GCC is smaller than k.

RabbitOrder

RabbitOrder:

e RO tries to increase locality by merging low degree vertices together
recursively to construct local communities.
e Then RO performs parallel DFS on the tree of merges for each
communities to number the vertices.
e When merging, uses the gain function: AQu,v = 2(;”7%}1 d&f{;zﬁz”)
o w,,= weight of edge (u, v); deg, = degree of v
o Merged vertices merge common edge weights and vertex weights.

RabbitOrder

RabbitOrder:

e RO tries to increase locality by merging low degree vertices together
recursively to construct local communities.

@
99 @) G
@O0 6;6; ® @ ?‘
@O @® ODPROWOE®

(i) (1) (ii1)
(b) Dendrogram construction

GOrder

GOrder:

e GO increases locality by sequentially labeling vertices that share many in-

neighbors and have a short path.
o Heuristic: S(v, u) =S, (v, u) + S(v, u)
o S,(v,u) = # of in-neighbors shared between vertices u and v
o S4(v, u) = # of edges between v and u

e GO chooses the next vertex to label by considering a sliding window of
previous vertices and comparing with new vertices.
e By labeling vertices this way, GO aims to increase temporal locality.

Analytical
Tools

Types of Locality

- Spatial locality (Type) - Concurrent processing temporal
- Neighbors are loaded to cache locality (Type IV)
together - Neighbor of a vertex is
- Temporal locality (Type) already loaded into cache by
- Subsequent vertices share another thread
neighbors in common - Concurrent processing spatio-
- Spatio-Temporal locality (Type lll) temporal locality (Type IV)
- Subsequent vertices have different - Neighbor shares a cache line
neighbors on the same cache line with vertex already loaded

as previous vertices into cache by another thread

Neighbor to Neighbor Average ID Distance

- New Metric: N2NAID
- Meant to measure how close neighbors’

IDs are i=| Ny |
- Lower N2NAID intuitively results in Z |Ny,i = Ny,i—1]
better Spatial Locality (Type I) AID, = =2

- Useful to think as “average gap profile”
in the CSR or CSC representation

Cache Miss Rate Degree Distribution

Twitter MPI
] . g 40 it "
- Meant to quantify cache misses e e X 1.7
. 5 = RabbitOrder / -\‘ .- F
as it relates to type of vertex % ol i wf""“"\\ L Z
(HDV or LDV) 2 izkv, N
5 i
- Locality might be prioritized for LR e €S ANE RS e
egree
LDV as they are the most Friendster
common, or for HDV as they are %9;‘5’ s \
needed the most Often. % ;: /’{ < . "’—"‘ = R SR ~ =3
Z b S
1 2 5 10 2 5 100 2 5 1000 2

Analysis of RAs

Recall that Slash-Burn relies on
the graph’'s power law property
to increase locality.

The graph on the right shows
that this property disappears
quickly in successive iterations.
After a certain point, SB
separates LDV from neighbors,
decreasing Type | and Il locality.
SB increases locality type Il and
lll for HDV of out-hubs by
grouping their IDs. This locality is
useful in pull SpMV.

Frequency / Max-Frequency (log scale)

= Initial State

= After Iteration 1
~ «= After Iteration 2
‘."-__.‘ - = After Iteration 4
) s . . S = After Iteration 8
—“"“~: N R = After Iteration 16

X
% After Iteration 2 -

-
-
-

Iterationd4 3

L |
After

- Initial State
Iteration 8

0 50 100 150 200 250 300

Degree

Rabbit-Order

Twitter MPI
e The DFS assignment of neighbors - LT
reduced the N2NAID of LDV. 10m P i N 0 P X I s T
e However, as the number of = St I P N P] B sl
neighbors a vertex has increases, M|
. . 2M 7 ~
consecutive IDs are less likely to 0 —
be assigned to itself and other oo
neighbors. S
e This results in poor locality for ot
HDV. v \\
0.8M = Initial —
%o.sm/ _ ! - 11 =R
0.4MI \ ".\ FAl S
0.2M ,—""'_Y"V:\I\' == “,“’.-.' ¥ '
0 1

1 2 5102 51002 510002 510k2 5100k2 SIM2 S
Degree

e GOrder numbered vertices based on

in-degree neighbors and proximity,
aiming to increase Type Il and Il

locality.

e GO was found to reduce cache
misses for HDV but not for LDV. They
reasoned this was due to the scoring
heuristic and the size of the sibling
window being evaluated.

e The ordering also occupied more of
the cache with LDV rather than HDV.

Miss Rate Percentage
AR RN

Miss Rate Percentage
GBH B8RS

Twitter MPI
| |
~Initial T
= SlashBum + ‘l
*GOrder i‘l‘_- .-0‘.'.
- RabbitOrder N AL \\ L
A R Jet 12
= E MO AT CA\J T >
Pr \ A % k] 1‘\‘ e RN I::l
............. v \" I
- »T et el :“rvn
1 2 10 2 5 100 2 5 1000 2 5 10k 2 5 100k 2
Degree
Friendster
' —— — - . = o TR [s
/ P T \
/., - 4° R E S “.f.
/,4" S e——— FELL - e
T B el o e T P ppSOR T
z'/' o¢° g ’o -
,'/ -""' - .o
oo | = Initial |
I O = SlashBum ‘
et ‘GOrder I
ja: - RabbitOrder |
1 10 - 5 100 2 5 1000

Complete Results

TABLE IV: [Real execution] SpMV execution results (Bl: Baseline without relabeling)

Dataset Time (ms) Idle (%) L3 Misses (M) DTLB Misses (K)
Bl SB GO RO Bl | SB | GO RO Bl SB GO RO Bl SB GO | RO
WebB 90 145 89 79 15|21 22 23 43 6.8 43 3.7 0.6 1.7 18 | 16

TwtrMpi 354 339 | 299 ‘ 366 || 1.8 | 2 Ly 15.7 142 126 163 4.7 23 | 31 | 31
Frndstr 771 761 578 667 12 |15 | 14 12 40.8 392 291 349 9.3 94 711 | 76

SK 117 168 109 ‘ 109 || 82 | 15 | 1.6 4.1 =i 88 5.5 53 0.8 14 05 | 06
WhbCe 438 414 | 311 297 19 | 23 | 23 131 20.5 193 135 126 86 | 68 69 | 45
UKDIs 194 317 ‘ 180 || 19 | 19 25 10.1 16.5 9.3 1.8 4.4 1.4
uu 282 486 285 19 | 1.9 6 14.6 249 138 238 7.8 24
UKDmn 297 459 ‘ 281 14 | 21 27 15.7 235 14.7 44 56 27

CIWh9 2,221 | 2,811 13 | 14 1009 | 1393 39M | 181

Web-Graph & Social Graph Structures

e As we saw in previous results,
RO produced better results on
web graphs than GO, and the
same went for GO on social
graphs. Why?

e Social Graphs have highly-
symmetrical in-hubs, while web
graphs do not.

GO performed better with social
graphs due to this symmetry;
HDVs have many HDV
neighbors.

RO performed better with web
graphs as HDVs overwhelmingly
have LDV neighbors so LDV
locality was more important.

Push vs. Pull Locality

e The direction of traversal also leverages the structure for locality.
Pull works better for web-graph because of the asymmetrical out-hubs;
that data is used many times.

e Push works better for social graphs due to the high in-hubs.

Applying the

Analysis

RA Iimprovements

Slash-Burn++: Limit reordering in RO:

e Avoid pitfalls of SB by stopping e Essentially, find a range of

early, when power law stops vertex degrees that RO is not
holding. effective for, and have a quick
e Good results! special case.
Dataset _|| Preprocessing (s) || Traversal (ms) || L3 Misses (M) e Found pre-processing time was

SB SB++ SB SB++ SB SB++
TwiMpi| 46 | 21 ||339| 328 [142| 136 reduced by 4x on some graphs.
Frndstr 75 43 761 700 39.2 36.0
WbCec 81 39 414 334 19.3 14.6

Future Work

Dynamically-sized Window for GO:

e Size of the window would be
large for LDVs, and small for
HDV.

e This would better reflect the

heuristic GO uses for ordering.

Combining Rabbit-Order & GOrder:

Suggest transitioning from RO to
GO when going from LDV to HDV
Could have best of both worlds
potentially.

