
Decoding billions of
integers per second
through vectorization (2012)
D. Lemire, L. Boytsov
Softw. Pract. Exper. 2015; 45:1–29

presented by Krit Boonsiriseth
MIT 6.506 Spring 2023

1

Overview ←
Vectorization
Integer compression
Results and summary

2

Decoding billions of
integers per second
through vectorization (2012)
D. Lemire, L. Boytsov

3

What are we decoding?

• Well, billions of integers… stored in a compressed format
• Specific problem: compressing and decompressing

sorted arrays of 32-bit integers

sorted array array of
differences compressed

1, 4, 10, 12 1, 3, 6, 2 ???
+3 +6 +2

4

Compressing and
decompressing billions of
sorted 32-bit integers per
second through
vectorization (2012)
D. Lemire, L. Boytsov

5

Compressing and
decompressing billions of
sorted 32-bit integers per
second through
vectorization (2012)
D. Lemire, L. Boytsov

6

Why are we compressing?

• Memory hierarchy: compressed data fits into faster storage

7

cache
memory

disk

faster

more capacity

Why is compression possible?

• We can’t compress a truly random list of integers.
• However, in practice most integers we encounter are far

smaller than 232.
• We can generally use much less than 32 bits per integer.

8

How are we compressing?

• We’ll talk about this later!

Overview
Vectorization
Integer compression ← here
Results

9

Compressing and
decompressing billions of
sorted 32-bit integers per
second through
vectorization (2012)
D. Lemire, L. Boytsov

10

Why sorted 32-bit integers?

• Example use case: database indexes
• Suppose we want to index occurrences of “Alice”.
• The row numbers form a sorted array of integers!

11

0 Bob
1 Alice
2 Bob
3 Bob
4 Alice
5 Alice
6 Bob
... …

1, 4, 5, …

Why sorted 32-bit integers?

• In this implementation, does not lose generality:
the actual compression step works on any array of integers

12

sorted array array of
differences compressed

1, 4, 10, 12 1, 3, 6, 2 ???
+3 +6 +2

Why sorted 32-bit integers?

• A guess: this paper was written in 2012, when 128-bit vector
registers were still the norm
• We’ll talk more about vectorization later!

13

Vector
instruction set

Register width Proposed Shipped

SSE 128 bits 1999 1999
SSE2 128 bits 2001 2001
SSE3 128 bits 2004 2004
AVX 256 bits 2008 2011

Compressing and
decompressing billions of
sorted 32-bit integers per
second through
vectorization (2012)
D. Lemire, L. Boytsov

14

How fast is billions per second?

• Processor clocks: a few billion cycles per second
• Fastest algorithm described by this paper takes 1.5 cycles per

integer to decode and 2.1 cycles per integer to encode
• This is around 1.5x faster than existing algorithms with

comparable compression ratios
• More evaluation results at the end!

• Possible because we can operate on multiple integers per
instruction, through vectorization!

15

Compressing and
decompressing billions of
sorted 32-bit integers per
second through
vectorization (2012)
D. Lemire, L. Boytsov

16

Overview
Vectorization ←
• Introduction
• History
• Vectorizing bit packing
• Vectorizing differential coding

Integer compression
Results and summary

17

What is vectorization?

• Vectorization is the use of vector instructions, which operate on
multiple data at once.

18

1 2 3 4
+

2 3 5 7
=

3 5 8 11
vectorized add

1
+
2
=
3

add

Brief history of vectorization

1966 First vectorized computer (ILLIAC IV)
1970s Vectorized supercomputers are commonplace
1990s Supercomputers move away from vectorization,

vectorization starts being commonplace in PCs
1996 Intel MMX instructions (64-bit vector registers)
1999 Intel SSE instructions (128-bit vector registers)
2004 End of clock speed scaling, parallelism becomes

necessary for optimal performance
2011 Intel AVX instructions (256-bit vector registers)

19

Benefits of vectorization

• "In a sense, the speed gains we have achieved are a direct
application of advanced hardware instructions to the
problem of integer coding (specifically SSE2 introduced in
2001)”

20

Vectorizing bit packing

sorted array array of
differences compressed

1, 4, 10, 12 1, 3, 6, 2 ???
+3 +6 +2

21

Vectorizing bit packing

Idea: just convert everything to vector instructions

22

bit unpacking vectorized bit unpacking

Vectorizing differential coding

sorted array array of
differences compressed

1, 4, 10, 12 1, 3, 6, 2 ???
+3 +6 +2

23

Vectorizing differential coding

Idea: compute differences of array elements that are 4
elements apart instead of consecutive elements

This is faster, but results in ~4x larger differences, which require
around 2 more bits per integer

24

13 18 19 20
-

1 4 10 12
=

12 14 9 8

22 25 28 29
-

13 18 19 20
=

9 7 9 9

1 4 10 12

=
1 4 10 12

Overview
Vectorization
Integer compression ←
• Introduction
• Compression metrics
• Examples of encodings

Results and summary

25

Integer compression

sorted array array of
differences compressed

1, 4, 10, 12 1, 3, 6, 2 ???
+3 +6 +2

26

Integer compression

• Most integers ‘should’ use much less than 32 bits.

00000000 00000000 00000000 00011001

• We’d like to just store this as 11001
• Issue: need to define an encoding to make it clear where each

integer starts and ends!

27

What makes for a good encoding?

speed
• integers decoded / encoded

per second
• decode speed is usually more

important

• bits used per integer

28

Integer encodings

The paper includes many examples of encodings; we’ll focus on
the ones that build up to the encodings that were actually used.
• Variable byte family
• Simple family
• Binary packing family
• Patched binary packing family

29

Variants implemented by
this paper

Variable byte encoding

Use 7 bits in each byte for data, one bit for metadata (1 to mark
starting point of each integer)

10000110 00010001 10000110 10010001
↓decodes as

1100010001, 110, 10001

30

varint-G81U1 encoding

New ingredient: store metadata in separate bytes

metadata 1 0 1 1 …
data 00000011 00010001 00000110 00010001

↓decodes as
1100010001, 110, 10001

This is faster because it can use a shuffle intrinsic, but uses
slightly more bits per integer
1 actual encoding uses different byte order and flips metadata bits

31

From Variable byte to Simple

Inefficiency #1: variable byte requires padding integers to bytes
even when most integers are less than a byte!

Fix #1: partition integers into blocks, and use different integer
sizes for each block

32

Simple-8b encoding

Encode into 64-bit blocks. Each block has 4 bits of metadata,
which determines the integer width for the remaining 60 bits of
data

metadata 0110 → mode 6: width is 5 bits per integer
data 00111 00010 10101 00000 11100 …

↓decodes as
111, 10, 10101, 0, 11100, …

This is slightly slower, but uses fewer bits per integer when most
integers are less than a byte

33

From Simple to Binary packing

Inefficiency #2: what if instead of (base 10)
7, 2, 13, 0, 22

we have
1000007, 1000002, 1000013, 1000000, 1000022

Fix #2: include offset in the metadata for each block

34

Binary packing encoding

Fix #2: include offset in the metadata for each block

metadata [bit width = 5], [offset = 106]
data 00111 00010 10101 00000 11100 …

↓decodes as
1000007, 1000002, 1000013, 1000000, 1000022, …

35

Binary packing + patching

Inefficiency #3: what if instead of (base 10)
7, 2, 13, 0, 22

we have
7, 2, 13, 1000000, 22

Fix #3: use small bit width, and store exceptions separately
(“patching”)

36

• Use small bit width, and store exceptions outside of blocks

Binary packing + patching

37

metadata [bit width = 5], [offset = 0], …
data 7, 3, 13, *, 22, …

blocks (~1000 bits each)

exceptions 1000000, …

• Organize blocks into pages that fit into LLC, and store the
exceptions in each page in an exception array

Binary packing + patching

38

page metadata
exception array

pages (~32 MB each)

metadata
data

blocks (~1000 bits each)

metadata
data

metadata
data …

• Use variable-length blocks
• Compress exception arrays!
• Use sampling heuristic to determine bit width for each block
• Store low bits of exception values as normal data

More optimizations

39

Options, options, options

40

This
paper

There are many design choices

Overview
Vectorization
Integer compression
Results and summary ←

41

Results

42

This paper

Results

43

faster

better
compression

Algorithms in this paper are on the
speed/compression ratio frontier

• This paper presents several integer encodings that are on the
speed/compression ratio frontier.
• This is achieved by vectorization and by optimizing some

design choices in a patched binary packing encoding

Summary

44

• This paper presents several integer encodings that are on the
speed/compression ratio frontier.
• This is achieved by vectorization and by optimizing some

design choices in a patched binary packing encoding
• It feels to me that the main idea for this paper is mostly

“vectorization works!”, but this paper was written in 2012,
which is around a decade after vectorization became popular.
• Natural directions for future work includes using newer vector

instruction sets (AVX, AVX-512) and further optimizing in the
design space of existing integer encoding families

Summary and discussion

45

