Decoding billions of
integers per second

through vectorization (2012)

D. Lemire, L. Boytsov
Softw. Pract. Exper. 2015; 45:1-29

presented by Krit Boonsiriseth
MIT 6.506 Spring 2023

Overview ¢«
Vectorization

Integer compression
Results and summary

Decoding billions of
integers per second
through vectorization (2012)

D. Lemire, L. Boytsov

What are we decoding?

« Well, billions of integers... stored in a compressed format

 Specific problem: compressing and decompressing
sorted arrays of 32-bit integers

sorted array array o compressed
differences

1,4,10,12 1,3,6, 2 ?7?7?
+3 +6 +2

billions of
sorted 32-bit integers per
second through

vectorization (2012)
D. Lemire, L. Boytsov

billions of
sorted 32-bit integers per
second through

vectorization (2012)
D. Lemire, L. Boytsov

Why are we ?

« Memory hierarchy: compressed data fits into

cache

memory
disk

Why 1s possible?

« We can’t compress a truly random list of integers.

* However, in practice most integers we encounter are far
smaller than 232,

« We can generally use much less than 32 bits per integer.

How are we compressing?

« We’ll talk about this later!

Overview

Vectorization

Integer compression < here
Results

Compressing and
decompressing billions of
sorted 32-bit integers per
second through

vectorization (2012)
D. Lemire, L. Boytsov

Why sorted 32-bit integers?

 Example use case: database indexes

» Suppose we want to index occurrences of “Alice”.

* The row numbers form a sorted array of integers!

0 Bob

Alice

Bob

sot 1,4,5, ..
Alice

Alice

Bob

oGl B W DN =

11

Why sorted 32-bit integers?

 In this implementation, does not lose generality:
the actual compression step works on any array of integers

array oi compressed
differences P

1,3,6,2 7?7

12

Why sorted 32-bit integers?

* A guess: this paper was written in 2012, when 128-bit vector

registers were still the norm
« We'll talk more about vectorization later!

Vector Register width Proposed Shipped
Instruction set

SSE 128 bits 1999 1999
SSE2 128 bits 2001 2001
SSE3 128 bits 2004 2004
AVX 256 bits 2008 2011

13

Compressing and

decompressing of

sorted 32-bit integers
through

vectorization (2012)
D. Lemire, L. Boytsov

How fast Is ?

* Processor clocks: a few billion cycles per second

 Fastest algorithm described by this paper takes
to decode and to encode

 This Is around than existing algorithms with
comparable compression ratios

 More evaluation results at the end!

* Possible because we can operate on multiple integers per
Instruction, through !

Compressing and
decompressing billions of
sorted 32-hit integers per

second through

(2012)
D. Lemire, L. Boytsov

Overview

Vectorization «

« Introduction

* History

« Vectorizing bit packing

« Vectorizing differential coding
Integer compression

Results and summary

17

What Is

 Vectorization is the use of
multiple data at once.

1
+

2

add

, Which operate on

3 4
5 7
3 11

18

Brief history of

1966 First vectorized computer (ILLIAC IV)

1970s Vectorized supercomputers are commonplace

1990s Supercomputers move away from vectorization,
vectorization starts being commonplace in PCs

1996 Intel MMX instructions (64-bit vector registers)

1999 Intel SSE instructions (128-bit vector registers)

2004 End of clock speed scaling, parallelism becomes

necessary for optimal performance
2011 Intel AVX instructions (256-bit vector registers)

Benefits of

« "In a sense, the speed gains we have achieved are a direct
application of advanced hardware instructions to the
problem of integer coding (specifically SSE2 introduced in
2001)”

Vectorizing bit packing

compressed

7?7

21

Vectorizing

Idea: just convert everything to vector instructions

void unpack5_8 (const uint32_tx in,

uint32_t«* out) {
*out++ ((*1in)) & 31;
*out++ = ((xin) >> 5) & 31;
*out++ = ((xin) >> 10) & 31;
*out++ = ((xin) >> 15) & 31;
~out++ = ((*in) >> 20) & 31;
~out++ = ((*in) >> 25) & 31;
*out ((*1in) >> 30);
++1in;
*out++ |= ((*1in) & 7) << 2;
*out = ((xin) >> 3) & 31;

const static
const static

_ ml28i m7
~ ml28i m31

_mm _setl_epi32 (7
_mm _setl_epi32 (31

void SIMDunpack5_8 (const
~ ml281i 1 =

_ ml28i%x in, __ ml28

~mm load si128(in);

U) ;
U);

ix out) {

_mm _store_sil28(out++, _mm and sil28(i , m31l));

_mm _store_sil28(out++, _mm and sil28(_mm srli_epi32(i
_mm_store_silZ28(out++, _mm and sil28(_mm_srli_ep132(1
_mm store_sil28(out++, _mm and sil28(_mm srli_epi32(i,
_mm _store_sil28(out++, _mm and sil28(_mm srli_epi32(1i,
_mm_store_silZ28(out++, _mm and sil28(_mm srli_epi32(i,

_ ml28i o = _mm srli epi32(i,30);
i = _mm load silZ28(++in);

o = _mm or sil28(o
_mm_store_sil28(out++,
_mm _store sil28(out++,

o);
. mm_and _s1i128(

, _mm _slli_epi32(_mm_and_

s1128(1,

m7),

o)
10)
15)
20)
25)

2))

_mm srli_epi32(i,3)

~ ~ ~ ~ 0~

22

m31));

Vectorizing differential coding

array of
sorted array differences

1,4,10,12 1,3,6, 2
+3 +6 +2

23

Vectorizing differential coding

Idea: compute differences of array elements that are 4
elements apart instead of consecutive elements

1 4 10 12 13 18 19 20 22 25 28 29

1 4 10 12 13 18 19 20

1 4 10 12 12 14 9 8 O 7 9 9

This is , but results in ~4x larger differences, which require

around 2 more bits per integer
24

Overview

Vectorization

Integer compression ¢«
* Introduction

« Compression metrics
« Examples of encodings

Results and summary

25

Integer compression

array of compressed
differences P

1,3,6,2 ?2?7?

26

Integer compression

* Most integers ‘should’ use much less than 32 bits.

11001

« We'd like to just store thisas 11001

 Issue: need to define an encoding to make it clear where each
Integer starts and ends!

What makes for a good encoding?

50224l compression
* Integers decoded / encoded * bits used per integer

per second

» decode speed is usually more
Important

28

Integer encodings

The paper includes many examples of encodings; we’ll focus on
the ones that build up to the encodings that were actually used.

 Variable byte family

« Simple family

* Binary packing family Variants implemented by
« Patched binary packing family this paper

Variable byte encoding

Use 7 bits in each byte for data, one bit for (2 to mark
starting point of each integer)

0000110 00210001 20000110 200120001
d decodes as
1100010001, 110, 10001

30

varint-G81U! encoding

New ingredient: store In separate bytes

data 00000011 00020001 00000110 00010001
d decodes as
1100010001, 110, 10001

This Is because It can use a , but uses
slightly more bits per integer

1

actual encoding uses different byte order and flips metadata bits

31

From Variable byte to Simple

Inefficiency #1: variable byte requires padding integers to bytes
even when most integers are less than a byte!

partition integers into blocks, and use different integer
sizes for each block

Simple-8b encoding

Encode into 64-bit blocks. Each block has of metadata,
which determines the integer width for the remaining 60 bits of
data

- mode 6: width is 5 bits per integer
data 001171 00010 10101 00000 11100 ...
d decodes as
111,10, 10101, 0, 11100, ...

This is slightly slower, but uses per integer when most

Integers are less than a byte N,

From Simple to Binary packing

Inefficiency #2: what if instead of (base 10)
7,2,13,0, 22
we have
1000007, 1000002, 1000013, 1000000, 1000022

Include offset in the metadata for each block

34

Binary packing encoding

Include offset in the metadata for each block

data 001171 0001010101 00000 11100....
d decodes as
1000007, 1000002, 1000013, 1000000, 1000022, ...

35

Binary packing + patching

Inefficiency #3: what if instead of (base 10)
7,2,13,0, 22
we have
7,2,13,1000000, 22

use small bit width, and store exceptions separately
(“patching”)

36

Binary packing + patching
» Use small bit width, and store exceptions outside of blocks

blocks (~1000 bits each)

data 7 3 13 * 22 ..

exceptions 1000000, ...

37

Binary packing + patching

* Organize blocks into pages that fit into LLC, and store the
exceptions in each page in an exception array

pages (~32 MB each)

exception array
blocks (~1000 bits each)

data data data

More optimizations

« Use variable-length blocks
« Compress exception arrays!
« Use sampling heuristic to determine bit width for each block

» Store low bits of exception values as normal data

Options, options, options

There are many design choices

Table ITI. Overview of the patched coding schemes: Only PFOR and PFOR2008 generate com-
pulsory exceptions and use a single bit width b per page. Only NewPFD and OptPFD store
exceptions on a per block basis. We implemented all schemes with 128 integers per block and

a page size of at least 216

integers.

Compulsory Bit width Exceptions

Compressed exceptions

PFOR [26] Yes Per page
PFOR2008 [25] Yes Per page
NewPFD/OptPFD [10] No Per block
This { FastPFOR (Section 5) No Per block
SIMD-FastPFOR (Section 5) No Per block
Paper SimplePFOR (Section 5) No Per block

Per page
Per page
Per block
Per page
Per page
Per page

No

8, 16, 32 bits
Simple-16

Binary packing
Vectorized bin. Pack.
Simple-8b

Overview

Vectorization

Integer compression
Results and summary «

Results

This paper

(a) ClueWeb09 (b) GOV2
Coding Decoding Bits/int Coding Decoding Bits/int
SIMD-BP128* 1600 2300 11 1600 2500 7.6
SIMD-FastPFOR* 330 1700 9.9 350 1900 7.2
SIMD-BP128 1000 1600 9.5 1000 1700 6.3
varint-G8IU™* 220 1400 12 240 1500 10
SIMD-FastPFOR 250 1200 8.1 290 1400 5.3
PFOR2008 260 1200 10 250 1300 7.9
PFOR 330 1200 11 310 1300 7.9
varint-G8IU 210 1200 11 230 1300 9.6
BP32 760 1100 8.3 790 1200 5.5
SimplePFOR 240 980 7.7 270 1100 4.8
FastPFOR 240 980 7.8 270 1100 4.9
NewPFD 100 890 8.3 150 1000 5.2
VSEncoding 11 740 7.6 11 810 54
Simple-8b 280 730 7.5 340 780 4.8
OptPFD 14 500 7.1 23 710 4.5
Variable Byte 570 540 9.6 730 680 8.7

42

Results

12 -
11 - C) “l"“““- . ¢’:
10 ““‘,‘;‘ : ““‘¢¢
[= 9r ‘ . ““‘ ““““‘
E 8 I v .AA‘—I:-----“““
< ; i @ " Algorithms in this paper are on the
s L speed/compression ratio frontier
4 I]]] |
0 500 1000 1500 2000 2500
decoding speed (mis)
SIMD-FastPFOR - SIMD-BP128* ||} NewPFD A
SIMD-FastPFOR* PFOR () VSE \/
SIMD-BP128 K BP32 @ Simplesb W
varint-G8IU |- FastPFOR /A OptPFD <> 43

Summary

* This paper presents several integer encodings that are on the
speed/compression ratio frontier.

* This Is achieved by and by optimizing some
design choices in a encoding

Summary and discussion

» This paper presents several integer encodings that are on the
speed/compression ratio frontier.

* This is achieved by and by optimizing some
design choices in a patched binary packing encoding

o It feels to me that the main idea for this paper is mostly
“vectorization works!”, but this paper was written in 2012,
which i1s around a decade after vectorization became popular.

* Natural directions for future work includes using newer vector
instruction sets (AVX, AVX-512) and further optimizing in the
design space of existing integer encoding families

45

