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What Is An Inverted Index?
● A data structure used in information retrieval systems to efficiently retrieve documents or web pages 

containing a specific term or set of terms. 

● In an inverted index, the index is organized by terms, and each term points to a list of documents or 
web pages that contain that term.

● Typically used to optimize efficiency of data retrieval queries.

● Has a good structure for optimizations.

● Used in variety of applications:
○ Search engines
○ Document retrieval systems
○ Recommendation systems
○ Social networks
○ Bioinformatics
○ Database management systems
○ etc
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Problem: 
Inverted Index can be very large!

• Google Search index contains hundreds of billions of webpages and is well 
over 100,000,000 gigabytes in size[1]. 

• The posts index alone in Facebook Graph Search houses over 700 TB of 
data and includes over 100 ranking factors for surfacing the most relevant 
content[2].

[1] https://www.google.com/search/howsearchworks/how-search-works/organizing-information/
[2] https://www.searchenginewatch.com/2013/10/25/facebook-on-graph-search-posts-index-700-tb-of-data-100-ranking-factors/

https://www.google.com/search/howsearchworks/how-search-works/organizing-information/
https://www.searchenginewatch.com/2013/10/25/facebook-on-graph-search-posts-index-700-tb-of-data-100-ranking-factors/


Survey encoding algorithms suitable for 
Inverted Index Compression

Characterize their performance through 
experimentations

Evaluate them using space and memory usage

Goals



Overview

● High level definition of compression techniques split into three 
subgroups.

● Description of the evaluation methodology.

● Experiment results and final thoughts.



Inverted Index Compression Technique Types

Integer Compressors

● Unary and Binary
● Gamma and Delta
● Golomb
● Rice
● Zeta
● Fibonacci
● Variable-Byte
● SC-Dense

List Compressors

● Binary packing
● Simple
● PForDelta
● Elias-Fano
● Interpolative
● Directly-addressable
● Hybrid
● Entropy encodings

Entire Index Compressors

● Clustered
● ANS-based
● Dictionary-based



Timeline of Compression Techniques



Integer Compressors



Integer Encoding Goals

● Map each integer to unique binary string codeword. 
● Ideally |𝐶(𝑥)| ≈ log!(1/ℙ(𝑥)).
● Good decoding and encoding performance.
● Low overhead for storing the encoding details. 

Sort Inverted List Determine Gaps 
Between Neighbors

Encode These 
Gaps Separately



Prefix-free Code

● No codeword is a prefix of another codeword.
● Can be rearranged so that lexicographical ordering stays intact.
● In this lexicographical ordering, codewords with same lengths will 

end up in consecutive order.
● Can be uniquely decoded.
● Lexicographical ordering can be exploited to increasing encoding 

and decoding performance.



Prefix-free Encodings



Prefix-free Encodings



Integer Encoding
Encoding Optimal when ℙ(𝒙) ≈

Unary 1/2𝑥

Binary 1/2𝑘

Gamma 1/(2𝑥2)

Delta 1/(2𝑥(log2𝑥)#)

Golumb 𝑝(1 − 𝑝)$%&

Rice 𝑝(1 − 𝑝)$%&

Zeta 1/(𝜁(𝛼)𝑥𝛼)

Fibonnaci
1/(2𝑥

1
𝑙𝑜𝑔2𝜙) ≈ 1/(2𝑥1.44)

VByte 7 1/𝑥8

SC-Dense (𝑠 + 𝑐)−𝑘(𝑥)

Codeword Length
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Unary Encoding

● Encode 𝑥 as 1!"#0.

● 𝐶 𝑥 = 𝑥.

● Optimal when ℙ(𝑥) ≈ 1/2!.
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Binary Encoding

● Encode 𝑥 as 𝑏𝑖𝑛 𝑥 − 1 .

● 𝐶 𝑥 ≈ log$(max{𝑥}) = 𝑘.

● Optimal when ℙ(𝑥) ≈ 1/2%.

𝑥 B(𝑥)
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Gamma Encoding

● Encode 𝑥 as unary representation of |𝑏𝑖𝑛(𝑥)|
followed by (|𝑏𝑖𝑛(𝑥)| − 1) bits from 𝑏𝑖𝑛 𝑥 .

● 𝐶 𝑥 = 2 𝑏𝑖𝑛 𝑥 − 1.

● Optimal when ℙ(𝑥) ≈ 1/(2𝑥2).

𝑥 𝛾(𝑥)
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Delta Encoding

● Gamma encoding of the length of the binary 
representation followed by (|𝑏𝑖𝑛(𝑥)| − 1)
bits from 𝑏𝑖𝑛 𝑥 .

● Replace first part in Gamma by 𝛾 𝑏𝑖𝑛 𝑥 .

● 𝐶 𝑥 = 𝛾 𝑏𝑖𝑛 𝑥 + 𝑏𝑖𝑛 𝑥 − 1 .

● Optimal when ℙ(𝑥) ≈ 1/(2𝑥(log2𝑥)$).

𝑥 𝛅(𝑥)
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Integer Encoding
Encoding Optimal when ℙ(𝒙) ≈

Unary 1/2𝑥

Binary 1/2𝑘

Gamma 1/(2𝑥2)

Golumb 𝑝(1 − 𝑝)$%&

Zeta 1/(𝜁(𝛼)𝑥𝛼)

Fibonnaci
1/(2𝑥

1
𝑙𝑜𝑔2𝜙) ≈ 1/(2𝑥1.44)

VByte 7 1/𝑥8

SC-Dense (𝑠 + 𝑐)−𝑘(𝑥)

Codeword Length Per Integer



Golomb Encoding

● Unary encoding of quotient(𝑞) followed by 
binary codeword for remainder(𝑟) with 
parameter 𝑏 > 1.

● Optimal when ℙ 𝑥 = 𝑝(1 − 𝑝)!"# (geometric).

𝑥 𝐺2(𝑥)
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Rice Encoding

● Special case of Golumb when 𝑏 = 2𝑘.

● |𝑅𝑖𝑐𝑒𝑘(𝑥)| = (𝑥 − 1)/2𝑘 + 𝑘 + 1.
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Integer Encoding
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Byte-aligned Encoding(VByte)

● Idea: align the bits used in codeword to byte or word lengths for faster 
reads.

● Most significant bit in each byte is reserved as a continuation bit, others 
used for data.

● Exploits SIMD instruction parallelisms and other hardware optimizations.

● OPT-Vbyte is a variation where continuation bits are stored separately.

● Optimal when ℙ 𝑥 ≈ ! 1/𝑥& or ℙ 𝑥 ≈ " 1/𝑥'.



List Compressors



List Compressors

● *Assume that integers are strongly ordered per list.

● Idea: encode entire list instead of each single integer separately.
● Theoretical lower bound on needed bits for encoding 𝑛 integers from 𝑈:

log"
𝑈
𝑛 = 𝑛 log"(𝑒𝑈/𝑛) − Θ 𝑛"/𝑈 − Ο 𝑙𝑜𝑔𝑛 ≈ 𝑛 log"(𝑈/𝑛) + 1.443𝑛

● Can be approximated considering that lists feature cluster of close integers.
● Given the existence of these clusters can encode relative changes.
● Might help if we reorder docIDs to form larger clusters.



Binary Packing

● Partition sequence into blocks and encode them separately.
● Gaps between the integers can also be used.
● Size of blocks can be fixed but better to be of variable size.
● Descriptor is needed for each variable sized block.
● Blocks can further be hardware-aligned (SIMD-BP128).



Simple Encoders

● Idea: partition on fixed-memory units 
and pack as many integers in them as
possible.

● Good compression and high 
decompression rates.

● Simple16 has 16 possible configurations 
and uses 32-bit words.

● QMX packs into 128 or 256-bit words 
and stores the selectors separately.



PForDelta(PFor) Encoders
Problem with Simple: space-inefficient when a block contains just one large value.
● Solution: pick a range [𝑏, 𝑏 + 2% − 1] that fits majority of the integers.
● Encode them with k bits.
● Mark other integers as exceptions and encode them separately with a different 

encoder algorithm.

b=2; 
k=4;



Elias-Fano Encoding

● Given 𝑛 sorted integers from range 1. . 𝑈 - Universe.
● Split integers into 𝑙 = log!(𝑈/𝑛) low bits and log! 𝑈 − 𝑙 ≈ log! 𝑛 high bits.
● Encode low bits separately with 𝑛 log!(𝑈/𝑛) size bitvector.
● Encode high bits separately with 2𝑛 bits:

○ Observe that 0 ≤ ℎ# ≤ 𝑛. And that ℎ#$% ≤ ℎ#.
○ For each element, set (ℎ#+𝑖)th bit to 1.
○ As a result we will get unary encodings of how many integers have ℎ# equal to particular value.



Elias-Fano Encoding



Elias-Fano Encoding: Random Access

Problem: how to decode a single individual integer?

● Get 𝑙" low bits with direct access. 
● Implement data structure to get 𝑆𝑒𝑙𝑒𝑐𝑡# 𝑖 = (𝑖𝑡ℎ 𝑏𝑖𝑡 𝑠𝑒𝑡 𝑡𝑜 b in H) in Ο(1).
● Then ℎ" = 𝑆𝑒𝑙𝑒𝑐𝑡$ 𝑖 − 𝑖.
● Concatenate 𝑙" and ℎ" to get 𝑆".
● Runs in Ο(1).



Elias-Fano Encoding: Successor Queries

Problem: how to get smallest 𝒚 ≥ 𝒙 for some 𝒙?

● Let ℎ% be the high bits of 𝑥.
● Set 𝑖 = 𝑆𝑒𝑙𝑒𝑐𝑡& ℎ% − ℎ% + 1 and j = 𝑆𝑒𝑙𝑒𝑐𝑡& ℎ% + 1 − ℎ%.
● 𝑖. . 𝑗 interval is where 𝑦 must be. 
● Do binary search. 
● Runs in Ο(1 + log(𝑈/𝑛)).



Elias-Fano Encoding: Partitioning by Cardinality(PEF)
Observation: in the inverted index integers are clustered.

● Partition into 𝑘 blocks of variable length
● On the first level encode with EF (1){𝑈#, . . , 𝑈%} upper bounds of the blocks and 

(2)prefix-summed sequence of sizes of blocks.
● On the second level encode the blocks themselves.
● Suppose a block with size 𝑏 and universe 𝑀:

1. If 𝑏 = 𝑀 – each element appears exactly once nothing to encode on the 2nd level.
2. If 𝑏 > 𝑀/4 – since 𝐸𝐹(𝑏,𝑀) > 𝑀 use characteristic encoding of size 𝑀.
3. If 𝑏 ≤ 𝑀/4 – use EF on the 2nd level.

● It can be shown that using DP to determine blocks sizes is only (1 + 𝜖) away 
from the optimal. But gets worse if 𝜖 is fixed.



Elias-Fano Encoding: Partitioning by Universe

Observation: high and low bit split can be chosen arbitrarily.

● Roaring: partition 𝑈(232) into chunk spanning 216 values each: 
1. If a chunk is sparse (less than 212 elements), encode as a sorted array of 16-bit integers.
2. If a chunk is dense (more than 212 elements), encode as a bitmap.
3. If a chunk is full (216 elements), encode implicitly.

● Slicing: similar to Roaring but continue encoding recursively if the chunk 
is sparse.



Binary Interpolative Code (BIC)

*Remember: strongly sorted sequence of clustered integers.

● Idea: fully use the clustering prior of the integers in the index, by 
squashing together any runs of consecutive integers.

● Recursively divide the index and the value range in half while encoding 
the middle element with as little amount of bits as possible

● In particular in a given interval 𝑆 𝑖. . 𝑗 with 𝑙 ≤ 𝑆[𝑖] and 𝑆 𝑗 ≤ ℎ:
1. Encode 𝑆 (𝑖 + 𝑗)/2 − 𝑙 − 𝑚 + 1 using log&(ℎ − 𝑙 − 𝑗 + 𝑖) bits.
2. Continue encoding of 𝑆[𝑖. . (𝑖 + 𝑗)/2 − 1] and 𝑆[(𝑖 + 𝑗)/2 + 1. . 𝑗] recursively.
3. If 𝑙 + 𝑗 − 𝑖 = ℎ holds, stop recursion and encode implicitly.



Binary Interpolative Code (BIC)



Entropy Encodings
Usually Good average codeword length, but can not compete with other methods.

● Huffman: Maintain a candidate set of tree and each step merge trees with lowest weight. Assign 
codewords based on the symbol’s location in the eventual tree.  Let 𝐿 be average Huffman codeword 
length:

○ 𝐿 is minimum possible among all the prefix-free encodings.
○ 𝐻# ≤ 𝐿 < 𝐻# + 1 where 𝐻# bits is the entropy of the system.

● Arithmetic: partition [0,1) interval to proportional length of system probabilities, pick first interval 
and recursively partition it. Eventually emit real number 𝑥 from [𝑙% , 𝑟%). ○ Requires infinite precision arithmetic but can be approximated.

○ Takes at most 𝑛𝐻# + 2 bits to encode entire sequence. In practice 𝑛𝐻# + 2𝑛/100 bits.

● Asymmetric Numeral Systems(ANS): Generate a frame from the sequence symbols with retaining the 
same probabilities. To encode start from column 0 and move to the column corresponding to the first 
symbol in the sequence. Continue the process emitting column number along the way.



Full Index Compressors

Clustered

● Group clusters of 
the lists sharing 
many integers.

● All lists in the 
cluster are then 
encoded with 
respect to the 
reference list.

● Used PEF for such
encoding.

ANS based

● Universe can be
very large even if
only gaps are taken
into account.

● Pre-process input 
list to a sequence of 
bytes.

● Then apply a 
combination of 
VByte and ANS.

Dictionary based(DINT)

● Store most frequent 
21patterns in 
dictionary for some 𝑏.

● Use this dictionary to 
encode subsequences 
of gaps.

● Can be further
optimized if we take 
advantage of the 
presence of runs of 1s 
in codeword 
modelling.



Dictionary-based Coding



Experimentations



Experimental Setting

● Machine: Intel 𝑖9 − 9900𝐾 @3.6𝐺ℎ𝑧 , 64𝐺𝐵 DDR3 RAM, Running Linux 5 (64bit)
● Code written in C++ with the highest optimization enabled:

○ Flags -03 and –march=native
● Datasets:



Experimental Methodology

● Data structure is a memory mapped from the file.
● Warm-up run is executed before the experiments are run.
● Testing on sequential reads.
● Queries consist of randomly chosen 1000 samples of intersection(AND)

and union(OR) queries consisting of terms from 2 to 5+.
● Average run time reported among 3 runs of the same experiment.
● What to watch out for:

○ Space Usage: measured in number of bits per integer 𝑏𝑖𝑡𝑠/𝑖𝑛𝑡.
○ Access Time: sequential or random. Measured in 𝑛𝑠/𝑖𝑛𝑡.



Tested Algorithms

Variable Byte

Optimized VByte

Interpolative

Delta

Rice

Elias-Fano

Dictionary based

PForDelta

Simple

Simple

Elias-Fano

Elias-Fano



Space Usage and Sequential Decoding Speed

Variable Byte

Optimized VByte

Interpolative

Delta

Rice

Elias-Fano

Dictionary based

PForDelta

Simple

Simple

Elias-Fano

Elias-Fano



Space Usage

Variable Byte

Optimized VByte

Interpolative

Delta

Rice

Elias-Fano

Dictionary based

PForDelta

Simple

Simple

Elias-Fano

Elias-Fano

BIC for the Win!
PEF Close 2nd VBYTE and 

ROARING 
have 

struggled.



Decoding Speed

Variable Byte

Optimized VByte

Interpolative

Delta

Rice

Elias-Fano

Dictionary based

PForDelta

Simple

Simple

Elias-Fano

Elias-Fano

ROARING and 
SLICING are 
crushing it!! BIC, DELTA 

and RICE are 
all struggling



Best Of Both Worlds

Variable Byte

Optimized VByte

Interpolative

Delta

Rice

Elias-Fano

Dictionary based

PForDelta

Simple

Simple

Elias-Fano

Elias-Fano

PEF and DINT 
have the best 

balance. BIC and 
ROARING are 
the extremes. 



AND Queries

Variable Byte

Optimized VByte

Interpolative

Delta

Rice

Elias-Fano

Dictionary based

PForDelta

Simple

Simple

Elias-Fano

Elias-Fano



OR Queries

Variable Byte

Optimized VByte

Interpolative

Delta

Rice

Elias-Fano

Dictionary based

PForDelta

Simple

Simple

Elias-Fano

Elias-Fano



Space/Time Trade-Offs



Final Thoughts

● If you want:
○ Speed: Roaring.
○ Compression effectiveness: BIC.
○ Best of both Worlds: PEF, DINT or Slicing.

● Try to utilize SIMD and aligning if possible to get better performance!

● How Zeta or Fibonacci would perform on Inverted Index?
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Appendix



Exponential Golomb Encoding

● Define 𝐵 = [0, 2% , ∑@AB# 2%C@ , ∑@AB$ 2%C@ , … ].

● Unary encoding of bucket identifier followed 
by binary encoding of bucket specific offset.

● 𝐶 𝑥 = 2ℎ + 1 where 𝐵 ℎ < 𝑥 ≤ 𝐵 ℎ + 1 .

𝑥 𝐸𝑥𝑝𝐺2(𝑥)

1
2
3
4
5
6
7
8

0.00
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Zeta Encoding

● Exponential Golumb with buckets: 
0, 2% − 1, 2$% − 1, 2D% − 1… .

● Unary encoding of bucket identifier 
followed by a minimal binary codeword 
for bucket specific offset.

● 𝑍# coincides with 𝐸𝑥𝑝𝐺B and Gamma.
● Optimal when ℙ 𝑥 = 1/(𝜁(𝛼)𝑥E)

distributed according to a power law 
and 𝜁() is Riemann zeta function.

𝑥 𝑍2(𝑥)
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Fibonacci Encoding

● Encode 𝑥 as binary of which Fibonacci 
numbers are used in unique some 
representation

● Generate Lexicographic Codewords of 
same lengths 

● Optimal when ℙ 𝑥 ≈ 1/(2𝑥
2

34567) ≈ 1
/(2𝑥#.&&)



SC-Dense Encoding

● Have 𝑐 continuers and 𝑠 stoppers, 
where 𝑐 + 𝑠 = 2'

● Can be better adapt for the distribution 
of the words

● 𝐶 𝑥 = 𝑘(𝑥) 𝑙𝑜𝑔$(𝑠 + 𝑐) where 𝑘 𝑥 is 
number of words needed

● Optimal when ℙ 𝑥 ≈ (𝑠 + 𝑐)"%(!)



Huffman Coding



Arithmetic Numeral Systems(ANS)

● Generate a frame from the sequence symbols with retaining the same 
probabilities

● To encode start from column 0 and move to the column corresponding to the 
first symbol in the sequence. Continue the process emitting column number 
along the way.


