Work-efficient parallel union-find

Natcha Simsiril | Kanat Tangwongsan? | Srikanta Tirthapura® | Kun-Lung Wu?*

1College of Information and Computer 3Department of Electrical and Computer
Sciences, University of Engineering, lowa State University, Ames, |A,
Massachusetts-Amherst, Amherst, MA, USA USA

2Computer Science Program, Mahidol 41BM T.J. Watson Research Center, Yorktown

University International College, Nakhon Heights, NY, USA
Pathom, Thailand

6.506 Paper Presentation
Thomas Bergamaschi

Thomas Bergamaschi

hir Motivation and Results

The Incremental Graph Connectivity Problem is Considered:

Given a graph G in which one receives edge updates dynamically, how
can one answer connectivity queries between pairs of vertices?

* This can be solved using the Union-Find data structure sequentially easily, but what about in parallel?

* The main contribution to this paper is a parallel data structure for Union-Find, which guarantees work efficiency
(inverse Ackermann and polylog depth)

* They also implement this algorithm and show how the performance scales practically with number of cores and graph
properties.

Thomas Bergamaschi 2

hir Outline

1. 6.046/6.1220 Recap: Union-Find data structure

2. Preliminaries and Notation for Parallel Edge Streams

3. Prior Work

4. Simple Parallel Data Structure — Without Path Compression
5. How to include Path Compression?

6. Implementation and Results

7. Conclusion

Thomas Bergamaschi

Mir 6.046 Recap: Union Find Data Structure

Recall the Union-Find Data Structure:

* Want to maintain a collection of disjoint sets and support two
operations:

union(u, v) and find(v)

union(u, v): combine the sets containing u and v
find(v): return a representative of the set containing v

* |dea: use a forest of trees representation with parent pointers

* The representative of a set is the root node

union(u, v): climb tree for both v and v and set pointers = 0(h) time

find(v): climb tree for v and returns root = 0(h) time

Worst case performance is O(n)
How to improve?

Thomas Bergamaschi

®

3

\

V1
Y2 Y3

X6

\

Y4

6.046 Recap: Union By Size

Union-Find Data Structure:

1. Union by size — Merge the smaller height tree onto the higher one:

Guarantees heights bounded by O(logn) = Amortized Work now 0 (log n)

V1

Y2

X1
X2 X3
X4 Xt X6

Thomas Bergamaschi

Y3

union(xy, y1)

Y4

X1
X2 X3
X4 X X6

Y2

Imagine repeated queries involving nodes at the bottom of tree: can we avoid wasting work?

Y3

V4

Mir 6.046 Recap: Path Compression

Union-Find Data Structure:

2. Path Compression — Redirect Parent Pointers to Avoid Repeated Tree climbing

* Via potential functions can show amortized O (logn) cost

X1
V4 find(xg)
X2 X3
X4 xe | | Xe Y2 Yi
X Xg Y4

Path Compression can Shorten Long Paths which would previously involve wasting work.

Thomas Bergamaschi 6

Mir 6.046 Recap: Combining Both Heuristics

Union-Find Data Structure:

Why not combine Union by Size and Path Compression?

* In 1973, amortized cost of O(log*n) per operation.

* In 1975, Tarjan showed an amortized cost of O(a(m, n)) per operation - a(m, n) is the inverse
Ackermann function and grows incredibly slowly.

* In 1989, an amortized Q(a(m,n)) amortized cost lower bound was shown.

* Has applications in Kruskal’s algorithm for Minimum Spanning Trees, Incremental Graph Connectivity

Problem, Cilk’'s Nondeterminator, and many more

What about a parallel version of this problem?

Thomas Bergamaschi

Parallel Edge Streams and Notation

We consider the Incremental Connectivity Problem:

Given a fixed set of vertices VV, we will receive a stream of graph edges, and the queries are connectivity queries:

We receive a graph stream A, composed of sequential minibatches A4, A,, ..., A;, where each 4; is a set

of edgeson V
The graph after 4; is received is G; = (V, UL_; A;), and each 4; can have different sizes.
Each minibatch can be thought of a set of union operations which need to be executed in parallel.

We want to support two operations:

_

Bulk-Union(A;): add the edges in A; to the graph in parallel

Bulk-Find({u;, vi}i-;l): return for each pair of vertices if they are connected at that point in the stream

~

J

Thomas Bergamaschi

With m unions, and q find operations, Union-Find can handle thisin O0((m + q)a(m + gq,n)) work

Mir Algorithm Assumptions

Notation and Assumed Algorithms:

We assume two parallel algorithms throughout the paper:

Parallel Integer Sort:

* Givenintegers aq,a, ..., a, where a; € [0,0(1) - n], we can produce a sorted sequence in O(n) work

and O(polylog(n)) depth

Parallel Connectivity:

* Given a graph G, we can compute a sequence of connected components in O(V + E) work and

O(polylog(V)) depth —recall the (B, d) decomposition algorithm we saw in Lecture 6

Thomas Bergamaschi

Nir Prior Work

A lot of Previous work has tackled variants of this problem:

Some work on minimizing the storage requirement in a “streaming model” by Feigenbaum et al.

* Assuming only o(n) workspace can compute connected components in) (g) passes using only 0(s)

memory.

* Algorithms for parallel connected components by Shun et al which are work efficient and polylog depth

(Lecture 6).

* Not much work on parallel algorithms for incremental connectivity...

Thomas Bergamaschi

10

Mir Simple Parallel Data Structure: Queries

How to Respond to Find Queries?

Bulk-Find({u;, vi}?zl): return for each pair of vertices if they are connected at that point in the stream

Initially, ignore Path Compression:

* Without Path Compression, connectivity queries are read-only, so run find queries entirely in parallel

Algorithm 1: Simple-Bulk-Same-Set(U, {(u;, vi))i_,

Input: U is the union find structure, and (u;, v;) is a pair of vertices, fori = 1,...,q.
Output: For each i, whether or not &; and v; are in the same set (i.e., connected in the graph).
1. fori=1,2,..., ,g do in parallel
2 | a — (U. find(u;) == U.£find(v;))
3: return <al as,...,dq)

* The parallel complexity is simply O(logn), and work is 0(q logn) — just by inheriting the properties of Union-Find

How to handle updates in parallel?

Thomas Bergamaschi 11

Mir Simple Parallel Data Structure: Updates

How to handle updates in parallel?
Bulk-Union(A;): add the edges in A; to the graph in parallel

Initially, ignore Path Compression:

* At first sounds simple: just apply unions for each edge in A; in parallel = bad because unions will update the forest,
so unsafe to naively run

 However, if union operations are isolated to different trees they can run in parallel!

* |In the worst case this can still lead to large parallel depth: just consider many operations on the same tree.

- N
How can we create a schedule of unions representing

the minibatch A; but can be run in parallel?
- J

Thomas Bergamaschi 12

I'lil Simple Parallel Data Structure: Scheduling Updates

How to schedule minibatch updates in parallel?

Consider a minibatch of 7 edges forming this star graph:

®
Uy * Running union(vy,v,), union(vy, v3), ..., union(vy, vg) is inherently
v v sequential and will take 7 rounds of unions

5 3

e Can we run some unions in parallel? Consider running union on an
equivalent set of vertices which can be ran in parallel:

Vg 1. Run union(vq,v,), union(vs, vs), union(vs, vg), union(vs, vg)

2. Run union(vq,v3), union(vs, v)
[

3. Run union(vy, vs)

* Each union involves different vertices and representatives so can be
ran in parallel! How can we find such an equivalent set?

U7 v8

13

Thomas Bergamaschi

I"lif Simple Parallel Data Structure: Algorithm

How to handle updates in parallel?

Bulk-Union(A;): add the edges in A; to the graph in parallel

Algorithm 2: Simple-Bulk-Union(U,A) Algorithm 3: Parallel-Join(U, C)
Input: U: the union find structure, A: a set of edges to add to the graph. Input: U: the union-find structure, C: a seq. of tree roots
> Relabel each (u,v) with the roots of u and v Output: The root of the tree after all of C are connected
1. A" — {pu,py) : (u,v) € A where p, = U.find(u) and p, = U.find(v)) t: it [C| == 1 then
— | > Remove self-loops N |l return Cl1]
20 A” «— {(u,v) : (u,v) € A" where u # v) j: ¢ seé —(C|/2]
3: C <« CC(A") . 5: u < Parallel-Join(U,C[1,2,...,/]) in parallel with
4. foreach C € C do in parallel v « Parallel-Join(U,C[{ + 1,4+ 2,...,|C|])
IE | Parallel-Join(U,C) 6: return U.union(u, v)

1. First create an equivalent minibatch of the new edges in terms of connected components — without self edges.

—*2. Over each set of representative nodes which will compose a connected component, join them in parallel

[Work on a minibatch of b edges is O(blogn), and span is O(logmax(b,n)).]

Thomas Bergamaschi 14

I'lil Simple Parallel Data Structure: Overall Results

Combining Everything:

Bulk-Find({u;, v;}_,): return for each pair of vertices if they are connected at that point in the stream

Bulk-Union(A;): add the edges in A; to the graph in parallel

Initially, ignore Path Compression:
e Our simple parallel data structure achieves 0((m + q) logn) work and polylog depth.

» We are manifestly not work efficient as we don’t reach O((m + q) a(m + q,n)) work.

How can Path Compression be implemented in parallel?

Thomas Bergamaschi 15

Mir How to Include Path Compression?

How to run Path Compression in parallel:

Bulk-Find({u;, v;}_,): return for each pair of vertices if they are connected at that point in the stream

* Shortcutting paths cannot be naively implemented when find operations are ran in parallel.
* Key Idea is to split find into two phases: read only in Phase 1, write updates to tree safely in Phase 2

Phase 1:

1. Forall queries run BFS up the tree in parallel, “merging” BFS flows whenever they meet. Keep a record of paths for
path compression

Phase 2:

1. Distribute the recorded paths to the vertices for compression. Run BFS backwards from the roots reached in Phase
1.

2. We need to be able to efficiently find for every node the flows that arrived at this node

Thomas Bergamaschi 16

How to Include Path Compression?

How to run Path Compression in parallel:

Bulk-Find({u;, v;}%_,)

Phase 1:

1. For all queries run BFS up the tree in parallel,
record of paths for path compression

Phase 2:

| o

merging” BFS flows whenever they meet. Keep a

: return for each pair of vertices if they are connected at that point in the stream

1. Distribute the recorded paths to the vertices for compression. Run BFS backwards from the roots
reached in Phase 1.

2. We need to be able to efficiently find for every node the flows that arrived at this node

(A)

19
6e—

é%b\
14 12
2 9
/ \
10

Glcl

Thomas Bergamaschi

TT~15

VAR
16 17 18 19

©)

6/(19\

2 5 ,9\
d@ 8\ 10

11

15
/INN
16 17 18 19

1

6/
14712 %/

8
I

|7

9

\

16 17 18 19

17

Mir Distributing Compressed Paths

We need to be able to efficiently find for every node the flows that arrived there:

* We need to maintain a Response Distributor R = (fromi,toi){:l=1 that can be constructed in O(A) work and
0(polylog(n)) depth

* It supports allFrom(f): returns a sequence of all to; where from; = f.
* Each query must be answered in O(log 1) depth and all the work for requests throughout Phase 2 takes O(A) work

 Via hashing each (from;, to;) pair, and using parallel integer sorting on the hash values one can quickly construct a
response distributor and respond to queries — more details in paper.

* Can show that we get all benefits from path compression in polylog depth for Bulk-Find({u;, vi}é‘zl) gueries

Thomas Bergamaschi 18

Mir Work Efficiency Proof

How to run Path Compression in parallel:

Bulk-Find({u;, v;}_,): return for each pair of vertices if they are connected at that point in the stream

Need to show that this algorithm is Work Efficient:
* |dea: what Bulk-Find does is equivalent to some sequential execution of find, so it does the same amount of work

* Paper argues that no matter the sequence of queries S, there is a permutation S’ that gives the same Union-Find forest
and incurs same work, and argue this bounds work at 0((m +q) a(m+ q,n)) work

* Combining previous results, they obtain a polylog(n) depth for Bulk-Union and Bulk-Find operations

4 ™
Overall, they obtain a work efficient parallel algorithm for Incremental Graph

Connectivity, and polylog depth for all batched updates and queries
. y,

Thomas Bergamaschi 19

IMir Implementation: Graphs Considered

Implementation:

 Asimpler path compression technique is considered:

1. Run find operations independently in parallel.

2. After root is found, go through the tree once more and update pointers along the path

 While this doesn’t give all the benefits of Path Compression, as it still can waste work, it helps manage longest paths in

the trees

TABLE1 Characteristics of the graph streams used in our experiments,
showing for every dataset, the total number of nodes (n), the total
number of edges (m), and a brief description

Graph #Vertices #Edges Notes
3Dgrid 99.9M 300M 3-d mesh

random 100M 500M 5 randomly-chosen neighbors per node
local5 100M 500M small separators, avg. degree 5

locall6 100M 1.6B small separators, avg. degree 16

rMat5 134M 500M power-law graph using rMat?23

rMatlé 134M 1.6B adenser rMat graph

Thomas Bergamaschi 20

Implementation:

Graph Details

Implementation:

---------- random ---- locald = rMatd
-- 3Dgrid -=- local16 — - rMat16
10" ¢
| TABLE1 Characteristics of the graph streams used in our experiments,
s |] showing for every dataset, the total number of nodes (n), the total
N 18 Fam e = = — e] : e
Q) A N R] number of edges (m), and a brief description
O N e T "~ 7| Graph #Vertices #Edges Notes
G 6 ¢ ~.~"~.~ - S~
o 10°F N T Tl 3Dgrid 999M 300M 3-d mesh
CT) \. ~~.,,~\.~ R random 100M 500M 5 randomly-chosen neighbors per node
O 104 = \‘ ~.,,\\) ~ local5 100M 500M small separators, avg. degree 5
% AR ""‘m\ R . locall6 100M 1.6B small separators, avg. degree 16
- §'.'
= 102t AR ", \'\ rMat5 134M 500M power-law graph using rMat23
- \5
\‘ % '\‘ rMatlé 134M 1.6B adenser rMat graph
1 3 Y,
_ N
100] | "L I 1 '\i
0 20% 40% 60% 80% 100%

Thomas Bergamaschi

Percentage of Processed Graph

21

Mir Results: Work Comparison

Results: TABLE2 Runningtimes (in seconds) on 1 thread of the baseline
union-find implementation (UF) with and without path compression
and the bulk-parallel version as the batch size is varied

Graph UF UF Bulk-Parallel using batch size

(nop.c) (p.c) 500K 1M 5M 10M

random 44.63 1842 65.43 66.57 7920 77.89

3Dgrid 30.26 14.37 61.10 62.00 71.74 73,07
local5 44.94 18.51 65.84 66.7/7 75.33 78.23
locall6 15440 46.12 11434 108.92 11480 117.55
rMat5 33.39 18.47 66.98 68.48 74.97 78.69
rMatl6 81.74 35.29 83.27 76.64 76.03 77.62

In general, bulk-parallel implementation is slower serially

Thomas Bergamaschi

22

Ui Results: Parallel Performance

Results

TABLE3 Average throughput (in million edges/second) and speedup of Bulk-Union for different batch sizes b, where T,
is throughput on 1 thread and T, is the throughput on 20 cores

Graph Using b = 500K Usingb = 1M Usingb = 5M Usingb = 10M

Ty Tooc Taoc/Ti Ta Tooc Taoc/T1 Ta T20c Tooc/T1 Tq T20c T20c/T1
random 7.64 36.87 4.8x 794 46.02 6.1x 6.65 60.66 2.3 6.42 63.90 10.0x
3Dgrid 4.91 27.97 5.7x 483 3497 72x 418 44.27 10.6x 399 4524 11.3x
local5 7.59 3841 5.1x 7.49 48.32 6.5x 6.64 64.61 9.7x 6.39 64.09 10.0x
locallé 13.99 78.83 5.6x 14.69 95.57 6.5x 13.94 12269 8.8x 1361 12203 9.0x

rMat5 7.47 26.08 3.5x 7.30 34.19 4.7x 6.67 49.92 7.5x 6.35 50.37 2%
rMatlé 19.21 54.94 2.9x 20.88 78.10 3.7x 21.05 143.63 6.8x 20.61 167.68 8.1x

v

In general, larger batch size, better speedup factors

Thomas Bergamaschi 23

Results: Average Throughput

Results

7x1 07 T

Plot of Average Throughput(edges/s) as a function of the number of threads

6x10” |-
5x107 |-
4x107 |
3x107 |-

2x107

1x107

batch size=10M —e—
batch size=56M ——
batch size=1M —8—

Thomas Bergamaschi

16 210
Random Graph

20c

7x107
6x10’
5x107
4x107
3x10’
2x10’

1x107

batch size=10M —e—
batch size=5M =———
batch size=1M —8—

1
16 20

Local 16 Graph

In general, more cores, more average throughput

24

20c

Mir Results: Average Throughput

Results Plot of Average Throughput(edges/s) as a function of the number of threads
1.8x10° ! ; r
1.6x10° =
1.4x10° -
1.2x10°
1x108 |
8x10” |-
6x10” |-
4x10’ batch size=10M —e— 7|
25107 batch size=56M —%— _
o i 1 | 1 batch size=1M —8—
12 4 8 16 20 20c
rMat 16 Graph

An exception to this is rMatl6 as it is sparsely connected, so not much
work to be done per minibatch

Thomas Bergamaschi

Mir Conclusion

Conclusion:

A parallel data structure for Union-Find was given and achieves:
* Work Efficiency: 0((m + q)a(m + gq,n)) work
e Polylogarithmic Depth for batched operations

A simplified version of the algorithm was implemented — with reduced path compression:
* Performs between 1.01-2.50X slower than previous sequential algorithms on benchmark graphs

e Obtains between 8-10X parallel speedups on large batch sizes

Open Questions to be Analyzed:

 How can we support edge deletions? — There are other Union Find variants which support deletions, but they can’t
be done in parallel

e For very large batches our work is superlinear (albeit almost linear due to Ackermann), however, can be done in
linear time. Can we have an algorithm which is linear work for large batches, and falls back to Union Find for small

batches?

Thomas Bergamaschi 26

