
Thomas Bergamaschi 1

6.506 Paper Presentation
Thomas Bergamaschi



Thomas Bergamaschi 2

Motivation and Results

The Incremental Graph Connectivity Problem is Considered:

Given a graph 𝐺 in which one receives edge updates dynamically, how 
can one answer connectivity queries between pairs of vertices?

• This can be solved using the Union-Find data structure sequentially easily, but what about in parallel?

• The main contribution to this paper is a parallel data structure for Union-Find, which guarantees work efficiency 
(inverse Ackermann and polylog depth)

• They also implement this algorithm and show how the performance scales practically with number of cores and graph 
properties.



Thomas Bergamaschi 3

Outline

1. 6.046/6.1220 Recap: Union-Find data structure

2. Preliminaries and Notation for Parallel Edge Streams

3. Prior Work

4. Simple Parallel Data Structure – Without Path Compression

5. How to include Path Compression?

6. Implementation and Results

7. Conclusion



Thomas Bergamaschi 4

6.046 Recap: Union Find Data Structure

Recall the Union-Find Data Structure:

• Want to maintain a collection of disjoint sets and support two 
operations:

union(u, v) and find(v)

union(u, v): combine the sets containing u and v
find(v): return a representative of the set containing v 

• Idea: use a forest of trees representation with parent pointers
• The representative of a set is the root node

union(u, v): climb tree for both u and v and set pointers ⇒ 𝑂 ℎ time 

find(v): climb tree for v and returns root ⇒ 𝑂 ℎ time 

Worst case performance is 𝑂 𝑛
How to improve?

𝑥%

𝑥& 𝑥'

𝑥( 𝑥)

𝑥* 𝑥+

𝑥,

𝑦%

𝑦& 𝑦'

𝑦(



Thomas Bergamaschi 5

6.046 Recap: Union By Size

Union-Find Data Structure:

1. Union by size – Merge the smaller height tree onto the higher one:

• Guarantees heights bounded by 𝑂 log 𝑛 ⇒ Amortized Work now 𝑂(log 𝑛)

union(𝑥!, 𝑦!) 

Imagine repeated queries involving nodes at the bottom of tree: can we avoid wasting work? 

𝑥%

𝑥& 𝑥'

𝑥( 𝑥)

𝑥* 𝑥+

𝑥,

𝑦%

𝑦& 𝑦'

𝑦(

𝑥%

𝑥& 𝑥'

𝑥( 𝑥)

𝑥* 𝑥+

𝑥,

𝑦%

𝑦& 𝑦'

𝑦(



Thomas Bergamaschi 6

6.046 Recap: Path Compression

Union-Find Data Structure:

2. Path Compression – Redirect Parent Pointers to Avoid Repeated Tree climbing

• Via potential functions can show amortized 𝑂(log 𝑛) cost

find(𝑥") 

Path Compression can Shorten Long Paths which would previously involve wasting work.

𝑥%

𝑥& 𝑥'

𝑥( 𝑥)

𝑥* 𝑥+

𝑥,

𝑦%

𝑦& 𝑦'

𝑦(

𝑥%

𝑥& 𝑥'

𝑥(

𝑥)

𝑥*
𝑥+

𝑥,

𝑦%

𝑦& 𝑦'

𝑦(



Thomas Bergamaschi 7

6.046 Recap: Combining Both Heuristics

Union-Find Data Structure:

Why not combine Union by Size and Path Compression?

• In 1973, amortized cost of 𝑂 log∗𝑛 per operation.

• In 1975, Tarjan showed an amortized cost of 𝑂 𝛼 𝑚, 𝑛 per operation - 𝛼 𝑚, 𝑛 is the inverse 

Ackermann function and grows incredibly slowly.

• In 1989, an amortized Ω(𝛼 𝑚, 𝑛 ) amortized cost lower bound was shown.

• Has applications in Kruskal’s algorithm for Minimum Spanning Trees, Incremental Graph Connectivity 

Problem, Cilk’s Nondeterminator, and many more

What about a parallel version of this problem?



Thomas Bergamaschi 8

Parallel Edge Streams and Notation

We consider the Incremental Connectivity Problem:

Given a fixed set of vertices 𝑉, we will receive a stream of graph edges, and the queries are connectivity queries:

• We receive a graph stream 𝒜, composed of sequential minibatches 𝐴!, 𝐴$, … , 𝐴%, where each 𝐴& is a set 

of edges on 𝑉

• The graph after 𝐴& is received is 𝐺& = (𝑉,⋃%'!
& 𝐴%), and each 𝐴& can have different sizes.

• Each minibatch can be thought of a set of union operations which need to be executed in parallel.

• We want to support two operations:

With 𝑚 unions, and 𝑞 find operations, Union-Find can handle this in 𝑂( 𝑚 + 𝑞 𝛼 𝑚 + 𝑞, 𝑛 ) work

Bulk-Union(𝐴!): add the edges in 𝐴! to the graph in parallel

Bulk-Find({𝑢!, 𝑣!}!"#$ ): return for each pair of vertices if they are connected at that point in the stream



Thomas Bergamaschi 9

Notation and Assumed Algorithms:

Algorithm Assumptions

We assume two parallel algorithms throughout the paper:

Parallel Integer Sort:

• Given integers 𝑎!, 𝑎$… , 𝑎( where 𝑎& ∈ [0, 𝑂(1) F 𝑛], we can produce a sorted sequence in 𝑂(𝑛) work 

and 𝑂 polylog 𝑛 depth

Parallel Connectivity:

• Given a graph 𝐺, we can compute a sequence of connected components in 𝑂(𝑉 + 𝐸) work and 

𝑂 polylog 𝑉 depth – recall the (𝛽, 𝑑) decomposition algorithm we saw in Lecture 6



Thomas Bergamaschi 10

Prior Work

A lot of Previous work has tackled variants of this problem:

• Some work on minimizing the storage requirement in a “streaming model” by Feigenbaum et al.

• Assuming only 𝑜(𝑛) workspace can compute connected components in Ω (
)

passes using only 𝑂(𝑠)

memory.

• Algorithms for parallel connected components by Shun et al which are work efficient and polylog depth 

(Lecture 6).

• Not much work on parallel algorithms for incremental connectivity…



Thomas Bergamaschi 11

Simple Parallel Data Structure: Queries

How to Respond to Find Queries?

Bulk-Find({𝑢& , 𝑣&}&'!
* ): return for each pair of vertices if they are connected at that point in the stream

Initially, ignore Path Compression:
• Without Path Compression, connectivity queries are read-only, so run find queries entirely in parallel

• The parallel complexity is simply 𝑂 log 𝑛 , and work is 𝑂(𝑞 log 𝑛) – just by inheriting the properties of Union-Find

How to handle updates in parallel?



Thomas Bergamaschi 12

Simple Parallel Data Structure: Updates

How to handle updates in parallel?

Initially, ignore Path Compression:

• At first sounds simple: just apply unions for each edge in 𝐴& in parallel ⇒ bad because unions will update the forest, 
so unsafe to naively run

• However, if union operations are isolated to different trees they can run in parallel!

• In the worst case this can still lead to large parallel depth: just consider many operations on the same tree.

Bulk-Union(𝐴&): add the edges in 𝐴& to the graph in parallel

How can we create a schedule of unions representing 
the minibatch 𝐴S but can be run in parallel?



Thomas Bergamaschi 13

Simple Parallel Data Structure: Scheduling Updates

How to schedule minibatch updates in parallel?

𝑣(

𝑣)

𝑣*

𝑣+𝑣,

𝑣-

𝑣. 𝑣/

Consider a minibatch of 7 edges forming this star graph:

• Running union(𝑣!, 𝑣$), union(𝑣!, 𝑣+), … , union(𝑣!, 𝑣") is inherently
sequential and will take 7 rounds of unions

• Can we run some unions in parallel? Consider running union on an 
equivalent set of vertices which can be ran in parallel:

1. Run union(𝑣!, 𝑣$), union(𝑣+, 𝑣,), union(𝑣-, 𝑣.), union(𝑣/, 𝑣")
2. Run union(𝑣!, 𝑣+), union(𝑣-, 𝑣/)
3. Run union(𝑣!, 𝑣-)

• Each union involves different vertices and representatives so can be 
ran in parallel! How can we find such an equivalent set?



Thomas Bergamaschi 14

Simple Parallel Data Structure: Algorithm

How to handle updates in parallel?

Bulk-Union(𝐴&): add the edges in 𝐴& to the graph in parallel

1. First create an equivalent minibatch of the new edges in terms of connected components – without self edges.

2. Over each set of representative nodes which will compose a connected component, join them in parallel

Work on a minibatch of 𝑏 edges is 𝑂 𝑏 log 𝑛 , and span is 𝑂(logmax(𝑏, 𝑛)) .



Thomas Bergamaschi 15

Simple Parallel Data Structure: Overall Results

Combining Everything:

Bulk-Union(𝐴&): add the edges in 𝐴& to the graph in parallel

Bulk-Find({𝑢& , 𝑣&}&'!0 ): return for each pair of vertices if they are connected at that point in the stream

Initially, ignore Path Compression:

• Our simple parallel data structure achieves 𝑂 𝑚 + 𝑞 log 𝑛 work and polylog depth.

• We are manifestly not work efficient as we don’t reach 𝑂 𝑚 + 𝑞 𝛼(𝑚 + 𝑞, 𝑛) work.

How can Path Compression be implemented in parallel?



Thomas Bergamaschi 16

How to Include Path Compression?

How to run Path Compression in parallel:

Bulk-Find({𝑢& , 𝑣&}&'!0 ): return for each pair of vertices if they are connected at that point in the stream

• Shortcutting paths cannot be naively implemented when find operations are ran in parallel.

• Key Idea is to split find into two phases: read only in Phase 1, write updates to tree safely in Phase 2

Phase 1:

1. For all queries run BFS up the tree in parallel, “merging” BFS flows whenever they meet. Keep a record of paths for 
path compression

Phase 2:

1. Distribute the recorded paths to the vertices for compression. Run BFS backwards from the roots reached in Phase 
1.

2. We need to be able to efficiently find for every node the flows that arrived at this node



Thomas Bergamaschi 17

How to Include Path Compression?

How to run Path Compression in parallel:

Bulk-Find({𝑢& , 𝑣&}&'!0 ): return for each pair of vertices if they are connected at that point in the stream

Phase 1:
1. For all queries run BFS up the tree in parallel, “merging” BFS flows whenever they meet. Keep a 

record of paths for path compression

Phase 2:
1. Distribute the recorded paths to the vertices for compression. Run BFS backwards from the roots 

reached in Phase 1.
2. We need to be able to efficiently find for every node the flows that arrived at this node



Thomas Bergamaschi 18

Distributing Compressed Paths

We need to be able to efficiently find for every node the flows that arrived there:

• We need to maintain a Response Distributor 𝑅 = from& , to& &'!1 that can be constructed in 𝑂(𝜆) work and 
𝑂 polylog 𝑛 depth

• It supports allFrom(f): returns a sequence of all to& where from& = 𝑓.

• Each query must be answered in 𝑂 log 𝜆 depth and all the work for requests throughout Phase 2 takes 𝑂(𝜆) work

• Via hashing each from& , to& pair, and using parallel integer sorting on the hash values one can quickly construct a 
response distributor and respond to queries – more details in paper.

• Can show that we get all benefits from path compression in polylog depth for Bulk-Find({𝑢& , 𝑣&}&'!0 ) queries



Thomas Bergamaschi 19

Work Efficiency Proof

How to run Path Compression in parallel:

Bulk-Find({𝑢& , 𝑣&}&'!0 ): return for each pair of vertices if they are connected at that point in the stream

Need to show that this algorithm is Work Efficient:

• Idea: what Bulk-Find does is equivalent to some sequential execution of find, so it does the same amount of work

• Paper argues that no matter the sequence of queries 𝑆, there is a permutation 𝑆′ that gives the same Union-Find forest 
and incurs same work, and argue this bounds work at 𝑂 𝑚 + 𝑞 𝛼(𝑚 + 𝑞, 𝑛) work

• Combining previous results, they obtain a polylog(𝑛) depth for Bulk-Union and Bulk-Find operations

Overall, they obtain a work efficient parallel algorithm for Incremental Graph 
Connectivity, and polylog depth for all batched updates and queries



Thomas Bergamaschi 20

Implementation: Graphs Considered

Implementation:

• A simpler path compression technique is considered:
1. Run find operations independently in parallel.

2. After root is found, go through the tree once more and update pointers along the path

• While this doesn’t give all the benefits of Path Compression, as it still can waste work, it helps manage longest paths in 
the trees



Thomas Bergamaschi 21

Implementation: Graph Details

Implementation:

Percentage of Processed Graph

N
um

be
r o

f C
Cs



Thomas Bergamaschi 22

Results: Work Comparison

Results:

In general, bulk-parallel implementation is slower serially



Thomas Bergamaschi 23

Results: Parallel Performance

Results

In general, larger batch size, better speedup factors



Thomas Bergamaschi 24

Results: Average Throughput

Results
Plot of Average Throughput(edges/s) as a function of the number of threads

Random Graph Local 16 Graph

In general, more cores, more average throughput



Thomas Bergamaschi 25

Results: Average Throughput

Results Plot of Average Throughput(edges/s) as a function of the number of threads

An exception to this is rMat16 as it is sparsely connected, so not much 
work to be done per minibatch

rMat 16 Graph



Thomas Bergamaschi 26

Conclusion
Conclusion:

A parallel data structure for Union-Find was given and achieves:

• Work Efficiency: 𝑂( 𝑚 + 𝑞 𝛼 𝑚 + 𝑞, 𝑛 ) work
• Polylogarithmic Depth for batched operations

A simplified version of the algorithm was implemented – with reduced path compression:

• Performs between 1.01-2.50× slower than previous sequential algorithms on benchmark graphs
• Obtains between 8-10× parallel speedups on large batch sizes

Open Questions to be Analyzed:
• How can we support edge deletions? – There are other Union Find variants which support deletions, but they can’t 

be done in parallel

• For very large batches our work is superlinear (albeit almost linear due to Ackermann), however, can be done in 
linear time. Can we have an algorithm which is linear work for large batches, and falls back to Union Find for small 
batches?


