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What This Talk Will Cover

* A brief review of currency control in parallel computing and existing
mechanisms

* An explanation of Transactional Memory built on Transactions

* A novel algorithm to ensure forward progress in any set of
transactions

e Correctness arguments for that algorithm
* Real-world complications of the algorithm
* Open problems and other notes



Concurrency Control

void main() {

spawn functionl();
function2();
return;

}

Functions that access the same memory locations called in parallel
might exhibit nondeterministic behavior if the programmer is not

careful.
Inconsistent interweaving of memory accesses due to scheduling

differences cause data races.
Concurrency control ensures that results are correct and consistent.
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Common Solution: Locking

* Locks require a thread to “obtain” permission from another source to access memory locations.

* Common locking mechanisms include mutexes and semaphores.

void functionl(int value) {

acquire(A_LOCK);
A[1] = value;
release(A_LOCK);
return;

Locking can be Problematic:
* Deadlocks: unbreakable sequence of threads waiting on each other
* Priority inversion: high-priority threads have to wait on completion of low-priority threads
* Overhead per resource: locks might be cumbersome to use in practice
e LOSS OF PARALLELISM!
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Common Solution: Nonblocking Algorithms

* Nonblocking mechanisms cannot

200
cause a thread to suspend e D |
because Of another thread;s bool CAS(int * array, int index, int old, int new) {
suspension. ol
* An example of a nonblocking return true;
mechanism is the Compare-And- ! urn
Swap (CAS) }
vold functionl(int value) {
Nonblocking can aISO be CAS(A, 1, expected_old, value);
. return;
problematic: ’

}
* HARD TO DESIGN!
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void main() {

Transactions o

functionl(
function2(
}
return;

}

)3
)5

 Set of instructions that perform work if and only if no conflict is present

* A conflict is when multiple transactions or threads attempt to access the
same block of transactional memory at once.

* Transactions can:

« Commit —upon “making it through,” the work is confirmed to be done correctly

* Abort — upon a conflict, the transaction will be reverted: none of its work will be
done, and it can be restarted

Transactions make concurrent programming easy for developers!
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Transactions (cont.)

void main() {
with _transaction {

functionl();
function2();

}

return;

}
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Transactions (cont.)

void main() {
with _transaction {

functionl();
function2();

return;
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Transactions (cont.)

void main() {
with _transaction {

functionl();
function2();

4V B VIADE IT OUT OF TRANSACTION, WE CAN COMMI

In this example, the work done by functionl and function2 has taken effect in memory.

4/20/23 Elie Cuevas - Simple, Deterministic Transaction Progress 9



Transactions (cont.)

void main() {
with _transaction {

functionl();
function2();

}

return;

}
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Transactions (cont.)
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void main() {
with _transaction {

functionl();

UL RELPARERINTERRUPTION — WE MUST

}

return;

}
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Transactions (cont.)

void main() {

’ with transaction {

functionl();
function2();

}

return;

}

In this example, the work done by functionl and function2 has NOT taken effect in memory.
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Transactional Memory

* Shared memory based on transactions to manage concurrency
* Allows for high-level abstraction rather than low-level synchronization

Transactional memory can still be problematic:
* Transactions can deadlock or find themselves starved of resources
* Transactions can livelock, endlessly aborting and restarting

Preventing these issues can get complicated (timestamping,
probabilistic backoff, pessimistic/optimistic control, etc.)!



What Would be Nice

The goal is a transactional memory structure and algorithm that:
e cannot deadlock
e cannot livelock
 always makes forward progress (always gets closer to a commit)
* is deterministic (same behavior every time)
* is easy to reason about



|[dea #1 — The Ownership Array

 Owner Array A: global array of locks (mutexes)

* Every transactional memory location will be mapped to a single lock, but locks
probably map to more than one memory location

* All locks support the following instructions:
* Acquire(lock): Try to hold the lock, block until it is available
* Try_Acquire(lock): Try to hold the lock, and return true or false for a success or failure
* Release(lock): Release the lock

* Owner function h : function that does the above-mentioned mapping
* Known globally (by all transactions)
* Probably a hash function
* If M represents all transactional memory, then h(m) is in A for all m in M.



ldea #2 : Local Transaction States

* Each transaction will keep a set L of all the locks it currently has
acquired

* Each transaction will also keep state so that it can be rolled-back
 Some transactions are irrevocable, but this is ok! Details later



The Formal Algorithm
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SAFE-ACCESS(x,L)

1 ifh(x)eL
2 / do nothing
3 else
4 M={ieL:i>h(x)}
5 Li=T\J{h(x)}
6 if M ==
7 ACQUIRE(lock[h(x)]) # blocking
8 elseif TRY-ACQUIRE(lock[h(x)]) # nonblocking
9 / do nothing
10 else
11 roll back transaction state (without releasing locks)
12 foricM
13 RELEASE (lock[i])
14 ACQUIRE(lock[h(x)]) # blocking
15 for all i € M in increasing order
16 ACQUIRE(lock[i]) # blocking
17 restart transaction # does not return

18 access location x
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The Algorithm, in Words

 When trying to access memory, first try to acquire its lock x.
* |f you already have it or immediately get it, obviously just continue.

* I[f someone else is currently holding x, do the following:
* Foralllocks yin L, if h(y) > h(x), release it (but don’t forget it!).
* Block on x
* Re-acquire all locks previously dropped, in sorted order, blocking if conflicted
* Restart transaction



The Algorithm, in Words

 When trying to access memory, first try to acquire its lock x.

* I[f someone else is currently holding x, do the following:
* Abort (without releasing any locks in L)
* Forany lock yin L, if h(y) > h(x), release it.
* Block on x
* Re-acquire all locks previously dropped, in sorted order, blocking if conflicted
* Restart transaction

Transactions abort themselves here, rather than At every restart, at least one more lock
being aborted at random by conflict. This simplifies is added to L so there must be a finite
transaction implementation. number of restarts




Lemma: Transactions do not Deadlock

* A transaction only blocks on a lock if that lock has a higher h value
than any other lock it holds.

* There is thus no cycle of blocking.



Lemma: Every Transaction Makes Forward Progress

* Every time a transaction restarts, it will hold at least one more lock
than it did before. If there is a finite number of locks needed per
transaction, then there is a finite number of restarts required to
acquire all necessary locks.

* Thatis, L, is a strict subset of L,

* Before a restart:
* All greater locks are dropped.
* Original conflict is obtained.
* All previously dropped locks are re-obtained.
* The lesser locks were never dropped.



Not So Fast: Real-World Complications

* How big should the ownership array be?
* Want to reduce chances of owner function collisions (birthday paradox!)
* Don’t want to take up too much space

* Experiments have been done empirically, but theoretical analysis remains
an open problem

 Not all transactions are reversible.

* If the algorithm knows all memory locations needed to be accessed in an
irrevocable transaction, then it can ensure all locks are held before ever
starting and ensure a commit.



More Related Open Problems

* Ownership array might be able to be cached for performance, owner
function writing addresses to cache lines — empirical evidence
needed

* Compilers might be able to optimize for groups of locks acquired in
transactions

* Lock ordering might be dynamic rather than static, which might
enable a faster algorithm



Questions?

void main() {
with_transaction {
askForQuestions();

answerQuestions();

}
thankTheAudience( );

endPresentation();
return;
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