Deterministic Parallel Random-Number
Generation for Task-Parallel* Platforms

(2012)

Charles E. Leiserson, Tao B. Schardl, Jim Sukha

Presented by Maximo Machado

*Paper refers to Task-Parallel as Dynamic Threading which is no longer in popular use

Why do we want determinism in programs?

e Debuggability

o Determinism makes it easy to replicate situations in
which the bug occurs

o Allows experiments to be performed to determine what
mismatches the expected result

e What does determinism mean in practice?

o Typically, that the program’s execution is equivalent in
behavior to the serial execution of a program

Why use a Task-Parallel Platform like Cilk?

e Parallelism is a desired feature which introduces
non-determinism

e Task-Parallel Platforms are able to control and manage this
non-determinism through their schedulers

e Contrasts with Static/POSIX Threads which are common
but require the programmer to explicitly manage scheduling
and load balancing

Mitigating RNG Non-determinism

e RNG is made deterministic through a seed which is its initial
state O

e RNG on each request to generate a new number enters a
new state, i.e. state 0 goes to state 1

e However, parallelism complicates things, suddenly
execution ordering can impact the ordering of RNG
requests, thereby making a simple seed approach
ineffective

Global RNG - Potential Solution #1

e Share a single RNG between all threads through a lock
e Lots of contention on lock and so is not very performant

e The state the RNG is in when a thread issues a request is
dependent on the execution order of all threads

Worker-local RNG - Potential Solution #2

e No lock needed since each worker has their own RNG
o This solves the contention issue

e However, it cannot guarantee same RNG call goes to the same
worker every time the program is run because of the
non-deterministic scheduler

e Problem of these two solutions is that the RNG seed is based
on the previous state, which is dependent on execution order

e How to create a solution based on some globally fixed ID?

1. Pedigrees
e The Solution

2. Dot-Mix
e Pedigree Based DPRNG*

3. Results

4. Conclusion

*Deterministic Parallel Random Number Generator

What are Pedigrees and How Can They Help?

e Uniquely identifies function on
2 key factors

o What function spawned it?
(Its parent)

o How many functions did
its parent spawn before it?
(Its rank)

e This is scheduler independent

int

fib(int n) {

if (n < 2) return n;
else {

}
3

nt X ¥

x = spawn fib(n-1);

y = fib(n-2);

sync;
return (x+y);

f|b(1)

f|b(2

\

f|b(3)

@
fib(1)

fib(0)

fib4)

GOl

»

fib(1)

C2)[b©) |(2)

Legend
Dotted Arrow = Spawn
Solid Arrow = Call

Oval = Rank before sync
Hexagon = Rank after sync

Spawn Tree of Recursive Parallel Fibonacci

DOT-Mix

e Pedigrees are variable length and the random numbers
must fit into a fixed sized machine word

e We can't directly use pedigrees to generate random
numbers

e Use compression function that takes the pedigree and
takes a dot product with random numbers to generate a

word sized number

RC6 Block Cipher - The Mix in DOT-Mix

e The compression is not enough, highly correlated pedigrees
will result in highly correlated numbers generated

e We need a mixing function, the one in DOT-Mix is as such:
e First, swap top and bottom half of bits of compressed value
e Then, apply function f to compressed value z for r rounds

o Higher rounds creates greater overhead but better RNG

f(2) = ¢(22° + 2) mod m .

Results of RNG Quality

® C om p ara b | e 'to Test r Passed Weak Poor Failed
M ersenne TWIS.ter |n Mersenne twister - 79 7l 7 14

. 16 83 6 4 14
Dieharder RNG Bom @ B W
benchmark DOTMIX (tree))]1 B 5 16

1 3 2 3 99

. . _ 0 0 0 0 17

e Optimal choice of r=4 R —
8 79 6 8 14

DoTMIX (loop) 421 ;g i 2 }2

1 556 2 8 42

0 2 0 1 104

LCGMIX (tree) 3 gi g 2(15 ég

Results of Performance Overhead

e Adding Pedigrees to Cilk
less than 1% overhead on
real world applications

e DOT-Mix within
reasonable range of
overhead for debugging
programs

500

400 F

y d 3
e I e I o T G o [DR Ex $% % % % |
200 ¢

Cycles per RNG Call

DotMix, r=16 —+—
00 DotMix, r=4 -3
1 [Worker-Local Mersenne Twister -- -~
Global Mersenne Twister - - @--

0

6 8 10 12 14 16 18 20 22
Pedigree Length L

Figure 8: Overhead of various RNG’s on the CBT benchmark when gener-

ating n = 220 random numbers. Each data point represents the minimum

of 20 runs. The global Mersenne twister RNG from the GSL library [21]

only works for serial code, while the worker-local Mersenne twister is a
nondeterministic parallel implementation.

Conclusion + Future Work

e Extending 4-independent hash functions to Pedigrees

o While unlikely, if a collision occurs, it is much more likely
for DOT-Mix to produce many subsequent collisions

e Applications where pedigree memoization with incremental
hash functions are performant

