Multidimensional Included
and Excluded Sums

Authors: Helen Xu, Sean Fraser, Charles E. Lelserson



Weak Included-Sums Problem



Problem: Given a 1D array A of size N,
compute range sum queries of size k



Problem: Given a 1D array A of size N,
compute range sum queries of size k

Solution: precompute prefix sums



Problem: Given a 2D array A of size N,
compute box sum queries of size k x k



Problem: Given a 2D array A of size N,
compute box sum queries of size k x k

Solution:

Apply the inclusion-exclusion
principle

We can extend this to d-dimensions
to answer queries in 0(2%) time
"Summed-area table" (SAT) algorithm

Sum OA

(0]

Sum OC




Strong Included-Sums Problem



Problem: Given a 1D array A of size N,
compute range gueries of size k.

Why does the previous approach fail?



Problem: Given a 1D array A of size N, compute range
queries of size k

Why does the previous approach fail?

- Previously, we were solving the weak included-sums
problem, meaning the operator has an inverse.

- A solution to the strong included-sums problem
cannot rely on inverses



Motivation



Motivation for Problem: Strong Included-Sums

- Solving the strong problem allows us to avoid subtraction and
catastrophic cancellation or round-off errors

- Real-time image processing/filtering can require rectangular
sum queries

- Note: the included-sums problem specifically asks us to
compute the range query of size k gver all positions in the
array




Problem: Given a 1D array A of size N, compute range max queries of size k

Solution:

Let's try to stay close to the idea we had before.
The specific issue is that we do not have an inverse (cannot subtract

prefixes)
Insight 1: In order to use a prefix sums, the starting point of a query

must be anchored at the starting point of the prefix computation
- (e can't be floating between two endpoints)

Insight 2: We haven't used the extra constraint of fixed query size.



Problem: Given a 1D array A of size N, compute range max queries of size k

Solution:
- "Bidirectional box-sum"™ (BDBS) algorithm
- Use "sum" as a stand-in for a general aggregating operation
- Create N/k chunks of size k subarrays, and precompute prefix and
suffix maxima over each.
- Any range of size k now can be
decomposed into ranges which

H k H
have an endpoint at the starting , \§<§:>\%\J\\i\;\\\\“\\\\w
. . Suffix : :
point of some subarray's | | ; |
prefix/suffix computation Pmﬁxr\\\\j\\{\:\\J\:\\\\:\\\\\

-  (We are guaranteed to be
anchored now)

Figure 5: An illustration of the computation in the bidirec-
tional box-sum algorithm. The arrows represent prefix and
suffix sums in runs of size k, and the shaded region repre-
sents the prefix and suffix components of the region of size k
outlined by the dotted lines.



Problem: Given a 1D array A of size N, compute range

Position

A

1

2

3

4

5

6

7

8

2

5

3

1

6

3

9

0

queries of size k



Problem: Given a 1D array A of size N, compute range

Position

A

4p

1 2 3 4 5 6 7 8
2|5(3|1]6(3[19]0
2|7 (10|11

queries of size k



Problem: Given a 1D array A of size N, compute range

Position

A

4y

1 2 3 4 5 6 7 8
2|5(3|1]6(3[9]0
2|7 (10|11 6|9 18|18

queries of size k



Problem: Given a 1D array A of size N, compute range

Position

A

4y

1 2 3 4 5 6 7 8
2|5(3|1]6(3[9]0
2|7 (10|11 6|9 18|18

18(12| 9 | 0

queries of size k



Problem: Given a 1D array A of size N, compute range queries of size k

Position 1 2 3 4 5 6 7 8

A l|l2|5|3|1|6[|3]|9]|0

f%p 2|7 110l11| 6| 9 |18]18

A 11| 9|41 |18[12|9 |0




Problem: Given a 1D array A of size N, compute range

Position

A

4y

A

A)

AI

1 3 4 5 6 7 8
2 3(1]16(3]9]0
2 10(11| 6| 9 (1818

11 411(18(121 9|0
N

11

queries of size k



Problem: Given a 1D array A of size N, compute range

Position

A

4y

A

A)

AI

1 2 3 4 5 6 7 8
2|15(3|1(6|3]|9/(0
P

2 (7 |10|111| 6|9 (18|18
)

1191411 |18(121 9| 0
\

11 (15

queries of size k



Problem: Given a 1D array A of size N, compute range

Position

A

4y

A

A)

AI

(o> I B &)

w | o

© [ N

o | ®©

11

18

12

11

15

queries of size k



Problem: Given a 1D array A of size N, compute range

Position

A

4p

A

A)

Al

10

11

18

18

11

18

12

11

15

13

19

18

12

queries of size k



Problem: Given a 2D array A of size N,
compute box guerilies of size k x k



Problem: Given a 2D array A of size N, compute box queries of size k x k

Solution:
- Apply the BDBS algorithm along one dimension to create A,
where A [x;,x,] = max(A[x :x +k, x,])
- Then, apply the BDBS algorithm along the second dimension to yield A,,
where A, [x,,x,] = max(A [x;, X,:x,+k]) = max(A[x :x +k, X, :x,+k]),
as desired.
- This can be generalized to an d-dimensional array by induction.



Excluded-Sums Problem



|
&

Problem: Given a 1D array A of
size N, compute excluded range

max queries of size k ’ "
(a) (b)

Figure 1: An illustration of included and excluded sums
in 2 dimensions on an n; X n, matrix using a (k,, k2)-box.
(a) For a coordinate (z1, z2) of the matrix, the included-sums
problem requires all the points in the k; X k; box cornered
at (z1,z2), shown as a grey rectangle, to be reduced using a
binary associative operator &. The included-sums problem
requires that this reduction be performed at every coordinate
of the matrix, not just at a single coordinate as is shown
in the figure. (b) A similar illustration for excluded sums,
which reduces the points outside the box.




Problem: Given a 1D array A of size N, compute excluded
range max queries of size k

Solution: Prefix and suffix sums



|
&

Problem: Given a 2D array A of
size N, compute excluded box max

queries of size k x k ’ s
(@) (b)

Figure 1: An illustration of included and excluded sums
in 2 dimensions on an n; X n, matrix using a (k,, k2)-box.
(a) For a coordinate (z1, z2) of the matrix, the included-sums
problem requires all the points in the k; X k; box cornered
at (z1,z2), shown as a grey rectangle, to be reduced using a
binary associative operator &. The included-sums problem
requires that this reduction be performed at every coordinate
of the matrix, not just at a single coordinate as is shown
in the figure. (b) A similar illustration for excluded sums,
which reduces the points outside the box.




Problem: Given a 2D array A of size N,
compute excluded box max queries of size
k x k

Existing Solution:

- In general, use all 29 combinations
of prefix/suffix sums with respect
to each dimension, yielding 0(29)
time per query

- "Corners" algorithm (Demaine et al.)

(1,1)
PP
N n PS
nl \
ky (%15 Xp)
||
SP .—l
k, SS
n,

Figure 11: An example of the corners algorithm in 2
dimensions on an n; X n2 matrix using a (k1, k2)-box cornered
at (z1,z2). The grey regions represent excluded regions
computed via prefix and suffix sums, and the black boxes
correspond to the corner of each region with the relevant
contribution. The labels PP, PS,SP,SS represent the
combination of prefixes and suffixes corresponding to each
vertex.



Problem: Given a 2D array A of size N,

compute excluded box max queries of
size k x k

Existing Solution:

- @General combinatorial construction
exists for higher dimensions

1-D

2-D




Improved Excluded Sums



Can we do better than exponential time in
number of dimensions?



Motivation for Strong Excluded-Sums

- Solving the strong problem again helps avoid round-off errors

- N-particle simulations

- The fast multipole method (FMM) is often used in this context for
approximating long-ranged forces (excluding interactions with neighbors that
are too close) and demands a similar computation

- Note: solving the strong included-sums problem (efficiently)
means we also solved the weak included-sums problem.

- By taking the complement, we also solve the weak excluded-sums
problems (this is the BDBS-complement algorithm)



Key Insight - Partitioning the Space

- In 1D, there are two disjoint spaces to combine
- A'[x] = Ap[x] + A_[x+k]

| prefix | k | st |




Key Insight - Partitioning the Space

- In 2D, there are four disjoint spaces

E— |

S —

(i) Prefix along
each row

(a)

(i) Suffix along
each row

(b)

Prefix

Suffix



Key Insight - Partitioning the Space

- In 3D, there are eight disjoint spaces. In general there are
2d for a d-dimensional space.
- We can see successively less tightly bound regions.

e IO o oy o e
R o o s | L
e - o R AR IX 17— rt Gt el SR

.........

2 2
Full Prefix / Suffi ! ) ;
ull | reflx_/ uffix 1 1,2 1,2,3
Dimensions:
Inc_:luded_ Sum 2,3 3 None
Dimensions:
(@) (b) ()

Consider the spaces bounded by the green planes



Key Insight - Partitioning the Space

Can we somehow compute the contribution of the two
spaces, then recurse onto a subproblem with d-1
dimensions?

- Loosely, we're taking out the top and bottom "buns" and then recursing
on the "patty"
- Box-Complement algorithm

P okt ) | ek | 1 A e A7
gL o LI | Ll
e - T O AL T 12, i it e eget |- (R

.................

2 2
Full Prefix / Suffi : s ;
u .relx_ uffix 1 1,2 1,2,3
Dimensions:
Included Sum , , 3 None
Dimensions:
(a) (b) (c)

Consider the spaces bounded by the green planes



Box-Complement

- Definition: the i-complement of a box is all elements that is
"out of range" in some dimension j < i and "in range" for all

dimensions > 1i.

- The first condition ensures that it doesn't intersect with the excluded box
- Notice: the (i+l1l)-complement contains the i-complement

P “feeeenn I &
e B 3 oF

o & KA
;. . -

Fecenes - Samd R

Full Prefix / Suffix

Dimensions: 1 1,2

Included Sum

. . 2,3 3
Dimensions:

(@) (b)

None

(c)



Understanding The Recursive Step

- Recall the 1D solution the problem.
- A'[x] = Ap[x] + A_[x+k]
- For the 2D problem, let's first try to compute the 1-complement

- These are all elements within the vertical bound, and outside the horizontal
bound of a given excluded box

- First, compute the prefixes and suffixes along one dimension.
3 Ap[xl, X,] = A[:x/,X,]

- ADG ] = Al ] O —
(i) Prefix along (i) Suffix along
each row each row
(a) (b)

Here, we consider an arbitrary point p at
the top left corner of the red box



Understanding The Recursive Step

- Next, we use the included sum algorithm (BDBS) to aggregate
the horizontal strips of prefixes and suffixes
- Alx,, x,] = Ap[xl,x2:xi+k]+AS[x1+k,x2:x2+k]
- At this point, all of the green area in the figure below is stored into the
top left corner of the red box

| ——— =~

(i) Prefix along (i) Suffix along
each row each row

(a) (b)



Understanding The Recursive Step

- Now, we need to add the contribution of the 2-complement that
wasn't added by the 1-complement.
- This is the remaining green area in the diagram
- We can construct A", where A'[x,] = Aphn)xz]
- This reduces one dimension down (projecting it all onto the last coordinate
of dimension 1 which is n,)

- We can now pass this onto the 1-dimensional solver!

Prefix

i R

(c) (d)



General Algorithm

- For d steps, compute the contribution of the new elements of

the current i-complement
- Apply prefix and suffix sums on the ith dimension
- Apply the BDBS algorithm d-i times and collect the contributions of the two
disjoint spaces
- Use the nth tensor on the ith dimension as the new tensor
- Time: O(dN), Space: O(N)
- Intuitively, the space and work exponentially shrinks on each level, of the
recursion, so the runtime is dominated

by the root ( :
- The implementation reuses space to Erjﬂﬂﬁjl3ﬁ;%£ELﬁ;3xf?ﬂﬂ‘j;
achieve linear complexity : e
. B 1 1
FuI[I)_Preflx_/ Suffix 1 1,2 1,2,3
Imensions:
In<_:|uded_ Sum 2,3 3 None
Dimensions:

(@) (b) (c)



Pseudocode

Box-COMPLEMENT(A, k)

i

© 00 JO U i WN

11
12
13
14
15
16
1t
18
19

// Input: Tensor A with d-dimensions, box size k
// Output: Tensor A’ with size and dimensions
// matching A containing the excluded sum.
init A’ with the same size as A
Ap — A A +— A
// Current dimension-reduction step
for i< 1tod
// Saved from previous dimension-reduction step.

A, < A reduced up to dimension 7 — 1

As < A, // Save input to suffix step

// PREFIX STEP

// Reduced up to ¢ dimensions.

PREFIX-ALONG-DIM along

dimension i on A,,.

A<+ A, // Save for next round

// Do included sum on dimensions [i + 1,d].

forj«<i+1tod

// A, reduced up to ¢ dimensions
BDBS-ALONG-DIM on
dimension j in A,
// Add into result
ADD-CONTRIBUTION from A4, into A’

20
21 // SUFFIX STEP
// Do suffix sum along dimension ¢
22 SUFFIX-ALONG-DIM along
23 dimension % in A,
24 // Do included sum on dimensions [i + 1,¢
25 forj«—i+1tod
26 // A reduced up to ¢ dimensions
27 BDBS-ALONG-DIM on
28 dimension j in Ay
29 // Add into result
30 ADD-CONTRIBUTION from A, into A’
31 return A’



Comparison of Current Algorithms

Algorithm Source Time Space  Included or Excluded?  Strong or Weak?
Naive included sum [This work| O(KN) O(N) Included Strong
Naive included sum complement [This work] O(KN) O(N) Excluded Weak
Naive excluded sums [This work] O(N?) O(N) Excluded Strong
Summed-area table (SAT) [6,15] O(29N) O(N) Included Weak
Summed-area table

complement (SATC) [6,15] ©(24N) O(N) Excluded Weak
Corners(c) 8] O((d+1/c)2¢N) ©(cN) Excluded Strong
Corners spine 8] O(2¢N) ©(dN) Excluded Strong
Bidirectional box sum (BDBS) [This work| O(dN) O(N) Included Strong
Blg;ﬁ;f;i;:)(zgggg Q) [This work] ©(dN) O(N) Excluded Weak
Box-complement [This work] O(dN) O(N) Excluded Strong

Table 1: A summary of all algorithms for excluded sums in this paper. All algorithms take as input a d-dimensional tensor
of N elements. We include the runtime, space usage, whether an algorithm solves the included- or excluded-sums problem,
and whether it solves the strong or weak version of the problem. We use K to denote the volume of the box (in the runtime
of the naive algorithm).

Note: these are the complexities to compute the query answers at all possible starting
positions in the 1input array.



Experimental Results

We can see the approaches in this
paper show linearity in time with
dimension number, while previous
approaches are exponential.

101_

100_

—e— Naive included sum complement
SATC

—e— BDBSC

—s=— Box-Complement

Time per element (in microseconds)

1 2 3 4 5 6 1 8 9
Dimension
Figure 4: Time per element of algorithms for excluded sums in
arbitrary dimensions. The number of elements N of the tensor
in each dimension was in the range [2097152,134217728|
(selected to be a exact power of the number of dimensions).

For each number of dimensions d, we set the box volume
K = 8%



Experimental Results

- The box-complement beats other
existing algorithms as the
computation of the operator

increases.
- Box-complement performs ~12 operations
per element while the best corners
algorithm performs ~22.

29
Corners Spine
Corners (1)
Gf 28 Corners (2)
g Corners (4)
g - Corners (8)
27 Box-Complement
5
g 26
(0]
@
(o}
(]
£ 25
|_
24 . ‘ . | I N
23 25 27 29 211 213 215 217

Time per @ (in ns)

Figure 10: The scalability of excluded-sum algorithms as
a function of the cost of operator & on a 3D domain of
N = 4096 elements. The horizontal axis is the time in
nanoseconds to execute @. The vertical axis represents the
time per element of the given algorithm divided by the time
for &. We inflated the time of @ using increasingly large
arguments to the standard recursive implementation of a
Fibonacci computation.



Paper Review

- The problem was really interesting and had lots of layers.

- Diagrams in the paper were helpful, but if it showed more
examples to work up to the full generalized algorithm it
would've helped make it easier to understand.

- Ideas for future directions:
- Proving these are optimal

- Loosening the restrictions on box size to a range of desired sizes
- Creating parallel implementations



References

https://epubs.siam.org/doi/epdf/10.1137/1.9781611976830.17

http://persson.berkeley.edu/pub/demaine®5blocks.pdf



https://epubs.siam.org/doi/epdf/10.1137/1.9781611976830.17
http://persson.berkeley.edu/pub/demaine05blocks.pdf

