
6.506:
Algorithm Engineering

© 2018-2023 MIT Algorithm Engineering Instructors 1

LECTURE 4
THE CILK RUNTIME SYSTEM

Alexandros-Stavros Iliopoulos
February 16, 2023

© 2018-2023 MIT Algorithm Engineering Instructors 2

Cilk Programming

Serial fib Parallelized fib using Cilk

Cilk allows programmers to make software run faster
using parallel processors.

Running time TS. Running time TP on P processors.

int fib(int n) {

if (n < 2) {

return n;

} else {

int x, y;

x = fib(n-1);

y = fib(n-2);

return (x + y);

}

}

int fib(int n) {

if (n < 2) {

return n;

} else {

int x, y;

cilk_scope {

x = cilk_spawn fib(n-1);

y = fib(n-2);

}

return (x + y);

}

}

© 2018-2023 MIT Algorithm Engineering Instructors 3

Scheduling in Cilk

• The Cilk concurrency
platform allows the
programmer to
express logical
parallelism in an
application.

•

•

int fib(int n) {

if (n < 2) return n;

int x, y;

cilk_scope {

x = cilk_spawn fib(n-1);

y = fib(n-2);

}

return (x + y);

}

© 2018-2023 MIT Algorithm Engineering Instructors 4

Scheduling in Cilk

• The Cilk concurrency
platform allows the
programmer to
express logical
parallelism in an
application.

• The Cilk scheduler
maps the executing
program onto the
processor cores
dynamically at runtime.

•

…

Memory I/O

$

P

$

P

$

P

Network

int fib(int n) {

if (n < 2) return n;

int x, y;

cilk_scope {

x = cilk_spawn fib(n-1);

y = fib(n-2);

}

return (x + y);

}

© 2018-2023 MIT Algorithm Engineering Instructors 5

Scheduling in Cilk

• The Cilk concurrency
platform allows the
programmer to
express logical
parallelism in an
application.

• The Cilk scheduler
maps the executing
program onto the
processor cores
dynamically at runtime.

• Cilk’s work-stealing
scheduler is provably
efficient.

…

Memory I/O

$

P

$

P

$

P

Network

int fib(int n) {

if (n < 2) return n;

int x, y;

cilk_scope {

x = cilk_spawn fib(n-1);

y = fib(n-2);

}

return (x + y);

}

© 2018-2023 MIT Algorithm Engineering Instructors 6

Cilk Platform

Compiler

Parallel
Performance

Linker
Runtime
Library

Binary

P⋯PPProgram
input

The compiler and
runtime library

together
implement

the scheduler.

int fib(int n) {

if (n < 2) return n;

int x, y;

cilk_scope {

x = cilk_spawn fib(n-1);

y = fib(n-2);

}

return (x + y);

}

source code

© 2018-2023 MIT Algorithm Engineering Instructors 7

WORK STEALING AND THE

WORK-FIRST PRINCIPLE

© 2018-2023 MIT Algorithm Engineering Instructors 8

Serial Execution & Stack Frames

Example:

fib(4)

int fib(int n) {

if (n < 2) return n;

int x, y;

x = fib(n-1);

y = fib(n-2);

return (x + y);

}

© 2018-2023 MIT Algorithm Engineering Instructors 9

Serial Execution & Stack Frames

Example:

fib(4)

4

int fib(int n) {

if (n < 2) return n;

int x, y;

x = fib(n-1);

y = fib(n-2);

return (x + y);

}

4

Call stack

Execution trace

© 2018-2023 MIT Algorithm Engineering Instructors 10

3

Serial Execution & Stack Frames

Example:

fib(4)

4

3

int fib(int n) {

if (n < 2) return n;

int x, y;

x = fib(n-1);

y = fib(n-2);

return (x + y);

}

4

Call stack

Execution trace

© 2018-2023 MIT Algorithm Engineering Instructors 11

2

3

1

Serial Execution & Stack Frames

Example:

fib(4)

4

3

2

1

int fib(int n) {

if (n < 2) return n;

int x, y;

x = fib(n-1);

y = fib(n-2);

return (x + y);

}

4

Call stack

Execution trace

© 2018-2023 MIT Algorithm Engineering Instructors 12

2

3

1

Serial Execution & Stack Frames

Example:

fib(4)

4

3

2

1

int fib(int n) {

if (n < 2) return n;

int x, y;

x = fib(n-1);

y = fib(n-2);

return (x + y);

}

4

Call stack

Execution trace

© 2018-2023 MIT Algorithm Engineering Instructors 13

2

3

Serial Execution & Stack Frames

Example:

fib(4)

4

3

2

1

int fib(int n) {

if (n < 2) return n;

int x, y;

x = fib(n-1);

y = fib(n-2);

return (x + y);

}

4

Call stack

Execution trace

© 2018-2023 MIT Algorithm Engineering Instructors 14

2

3

Serial Execution & Stack Frames

Example:

fib(4)

4

3

2

1 0

int fib(int n) {

if (n < 2) return n;

int x, y;

x = fib(n-1);

y = fib(n-2);

return (x + y);

}

4

Call stack

Execution trace

© 2018-2023 MIT Algorithm Engineering Instructors 15

Serial Execution & Stack Frames

Example:

fib(4)

4

3

2

2

1

1 1 0

0

int fib(int n) {

if (n < 2) return n;

int x, y;

x = fib(n-1);

y = fib(n-2);

return (x + y);

}

Call stack

Execution trace

© 2018-2023 MIT Algorithm Engineering Instructors 16

Serial Execution & Stack Frames

Example:

fib(4)

4

3

2

2

1

1 1 0

0

int fib(int n) {

if (n < 2) return n;

int x, y;

x = fib(n-1);

y = fib(n-2);

return (x + y);

}

Call stack

The trace unfolds dynamically.
The call stack keeps track of

outstanding functions.

Execution trace

© 2018-2023 MIT Algorithm Engineering Instructors 17

Parallel Execution

Example:

fib(4)

4

3

2

2

1

1 1 0

0

int fib(int n) {

if (n < 2) return n;

int x, y;

cilk_scope {

x = cilk_spawn fib(n-1);

y = fib(n-2);

}

return (x + y);

}

The trace unfolds dynamically
and expresses the logical

parallelism in the program.

© 2018-2023 MIT Algorithm Engineering Instructors 18

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a call stack.

P

spawned

called

called

P

spawned

PP

called

spawned

called

spawned

called

Work Stealing

© 2018-2023 MIT Algorithm Engineering Instructors 19

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a call stack.

P

spawned

called

called

P

spawned

PP

called

spawned

called

spawned

called

Call!

Work Stealing

© 2018-2023 MIT Algorithm Engineering Instructors 20

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a call stack.

P

spawned

called

called

called

P

spawned

PP

called

spawned

called

spawned

called

Work Stealing

© 2018-2023 MIT Algorithm Engineering Instructors 21

P

spawned

called

called

called

P

spawnspawned

PP

called

spawned

called

spawned

called

Spawn!

Work Stealing

Spawn!Call!

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack.

© 2018-2023 MIT Algorithm Engineering Instructors 22

P

spawned

called

called

called

spawned

P

spawnspawned

PP

called

spawned

called

spawned

called

Work Stealing

called

spawned

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack.

© 2018-2023 MIT Algorithm Engineering Instructors 23

P

spawned

called

called

called

spawned

P

spawned

PP

called

spawned

called

called

spawned

called

spawned

Steal!

Work Stealing

When a worker runs out of work, it steals
from the top of a random victim’s deque.

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack.

© 2018-2023 MIT Algorithm Engineering Instructors 24

P

spawned

called

called

called

spawned

P

spawned

PP

called

spawned

called

called

spawned

called

spawned

Work Stealing

When a worker runs out of work, it steals
from the top of a random victim’s deque.

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack.

© 2018-2023 MIT Algorithm Engineering Instructors 25

Parallel Speedup

TS — work of a serial program

Suppose the serial program is parallelized.
T1 — work of the parallel program

T∞ — span of the parallel program

TP — running time of the parallel program on P cores

Parallel scalability = T1/TP

Parallel speedup = TS/TP

© 2018-2023 MIT Algorithm Engineering Instructors 26

Work-Stealing Bounds

Theorem. The Cilk work-stealing scheduler achieves
expected running time

TP ≈ T1/P + O(T∞)

on P processors.

© 2018-2023 MIT Algorithm Engineering Instructors 27

Work-Stealing Bounds

Theorem. The Cilk work-stealing scheduler achieves
expected running time

TP ≈ T1/P + O(T∞)

on P processors.

Time workers
spend working.

© 2018-2023 MIT Algorithm Engineering Instructors 28

Work-Stealing Bounds

Theorem. The Cilk work-stealing scheduler achieves
expected running time

TP ≈ T1/P + O(T∞)

on P processors.

Time workers
spend working.

Time workers
spend stealing.

© 2018-2023 MIT Algorithm Engineering Instructors 29

Work-Stealing Bounds

Theorem. The Cilk work-stealing scheduler achieves
expected running time

TP ≈ T1/P + O(T∞)

on P processors.

Time workers
spend working.

Time workers
spend stealing.

If the program has ample parallelism, i.e., T1/T∞ ≫ P,
then the first term dominates, and TP ≈ T1/P.

© 2018-2023 MIT Algorithm Engineering Instructors 30

Parallel Speedup

TS — work of a serial program

Suppose the serial program is parallelized.
T1 — work of the parallel program

T∞ — span of the parallel program

TP — running time of the parallel program on P cores

Parallel scalability = T1/TP

Parallel speedup = TS/TP

To achieve linear speedup on P processors over the
serial program, i.e., TP ≈ TS/P, we need :
1. Ample parallelism: T1/T∞ ≫ P .
2. High work efficiency: TS/T1 ≈ 1.

© 2018-2023 MIT Algorithm Engineering Instructors 31

The Work-First Principle

To optimize the execution of programs with sufficient
parallelism, the implementation of the Cilk scheduler
aims to maintain high work efficiency by abiding by the
work-first principle:

Optimize for ordinary serial execution,
at the expense of some additional

overhead in steals.

© 2018-2023 MIT Algorithm Engineering Instructors 32

CORE FUNCTIONALITIES

FOR WORK STEALING

© 2018-2023 MIT Algorithm Engineering Instructors 33

int fib(int n) {

if (n < 2) return n;

int x, y;

cilk_scope {

x = cilk_spawn fib(n-1);

y = fib(n-2);

}

return (x + y);

}

Cilk’s Execution Model

4

3

2

2

1

1 1 0

0
Example:

fib(4)
The trace unfolds dynamically

and expresses the logical
parallelism in the program.

© 2018-2023 MIT Algorithm Engineering Instructors 34

int fib(int n) {

if (n < 2) return n;

int x, y;

cilk_scope {

x = cilk_spawn fib(n-1);

y = fib(n-2);

}

return (x + y);

}

Workers Mirror Serial Execution

Example:

fib(4)

4 P1

P1 %rip

4

P1

© 2018-2023 MIT Algorithm Engineering Instructors 35

int fib(int n) {

if (n < 2) return n;

int x, y;

cilk_scope {

x = cilk_spawn fib(n-1);

y = fib(n-2);

}

return (x + y);

}

Workers Mirror Serial Execution

Example:

fib(4)

4 P1

P1 %rip

4

P1

© 2018-2023 MIT Algorithm Engineering Instructors 36

int fib(int n) {

if (n < 2) return n;

int x, y;

cilk_scope {

x = cilk_spawn fib(n-1);

y = fib(n-2);

}

return (x + y);

}

Workers Mirror Serial Execution

Example:

fib(4)

4

3 P1

P1 %rip

4

3

P1

© 2018-2023 MIT Algorithm Engineering Instructors 37

int fib(int n) {

if (n < 2) return n;

int x, y;

cilk_scope {

x = cilk_spawn fib(n-1);

y = fib(n-2);

}

return (x + y);

}

Workers Mirror Serial Execution

4

3 P1

P1 %rip

Example:

fib(4)

4

3

P1

© 2018-2023 MIT Algorithm Engineering Instructors 38

int fib(int n) {

if (n < 2) return n;

int x, y;

cilk_scope {

x = cilk_spawn fib(n-1);

y = fib(n-2);

}

return (x + y);

}

Workers Mirror Serial Execution

4

3 P1

P1 %rip

Example:

fib(4)

4

3

P1

© 2018-2023 MIT Algorithm Engineering Instructors 39

int fib(int n) {

if (n < 2) return n;

int x, y;

cilk_scope {

x = cilk_spawn fib(n-1);

y = fib(n-2);

}

return (x + y);

}

Workers Mirror Serial Execution

4

3

2
P1

P1 %rip

Example:

fib(4)

4

3

2

P1

© 2018-2023 MIT Algorithm Engineering Instructors 40

int fib(int n) {

if (n < 2) return n;

int x, y;

cilk_scope {

x = cilk_spawn fib(n-1);

y = fib(n-2);

}

return (x + y);

}

Workers Mirror Serial Execution

4

3

2 P1

P1 %rip

Example:

fib(4)

4

3

2

P1

© 2018-2023 MIT Algorithm Engineering Instructors 41

int fib(int n) {

if (n < 2) return n;

int x, y;

cilk_scope {

x = cilk_spawn fib(n-1);

y = fib(n-2);

}

return (x + y);

}

Workers Mirror Serial Execution

4

3

2 P1

P1 %rip

Example:

fib(4)

4

3

2

P1

© 2018-2023 MIT Algorithm Engineering Instructors 42

int fib(int n) {

if (n < 2) return n;

int x, y;

cilk_scope {

x = cilk_spawn fib(n-1);

y = fib(n-2);

}

return (x + y);

}

Workers Mirror Serial Execution

4

3

2

1
P1

P1 %rip

Example:

fib(4)

4

3

2

1

P1

© 2018-2023 MIT Algorithm Engineering Instructors 43

int fib(int n) {

if (n < 2) return n;

int x, y;

cilk_scope {

x = cilk_spawn fib(n-1);

y = fib(n-2);

}

return (x + y);

}

Successful Steals Create Parallelism

4

3

2

1 P1

P1 %rip

Example:

fib(4)

4

3

2

1

P1 P2

© 2018-2023 MIT Algorithm Engineering Instructors 44

int fib(int n) {

if (n < 2) return n;

int x, y;

cilk_scope {

x = cilk_spawn fib(n-1);

y = fib(n-2);

}

return (x + y);

}

Successful Steals Create Parallelism

4

3

2

1 P1

P1 %rip

Example:

fib(4)

4

3

2

1

P1 P2

© 2018-2023 MIT Algorithm Engineering Instructors 45

int fib(int n) {

if (n < 2) return n;

int x, y;

cilk_scope {

x = cilk_spawn fib(n-1);

y = fib(n-2);

}

return (x + y);

}

Successful Steals Create Parallelism

4

3

2

1 P1

P2

P2 %rip

P2 resumes fib(4)

mid-execution.

P1 %rip

Example:

fib(4)

4

3

2

1

P1 P2

© 2018-2023 MIT Algorithm Engineering Instructors 46

int fib(int n) {

if (n < 2) return n;

int x, y;

cilk_scope {

x = cilk_spawn fib(n-1);

y = fib(n-2);

}

return (x + y);

}

Successful Steals Create Parallelism

4

3

2

2

1 P1

P2

P2 %rip

P1 %rip

Example:

fib(4)

P1

4

P2

3

2

1

© 2018-2023 MIT Algorithm Engineering Instructors 47

int fib(int n) {

if (n < 2) return n;

int x, y;

cilk_scope {

x = cilk_spawn fib(n-1);

y = fib(n-2);

}

return (x + y);

}

Successful Steals Create Parallelism

4

3

2

2

1 P1

P2

P2 %rip

P1 %rip

Example:

fib(4)

P1

4

P2

3

2

1

© 2018-2023 MIT Algorithm Engineering Instructors 48

int fib(int n) {

if (n < 2) return n;

int x, y;

cilk_scope {

x = cilk_spawn fib(n-1);

y = fib(n-2);

}

return (x + y);

}

Successful Steals Create Parallelism

4

3

2

2

1 P1

P2

P2 %rip
P1 %rip

Example:

fib(4)

P1

4

2

P2

3

2

1

© 2018-2023 MIT Algorithm Engineering Instructors 49

int fib(int n) {

if (n < 2) return n;

int x, y;

cilk_scope {

x = cilk_spawn fib(n-1);

y = fib(n-2);

}

return (x + y);

}

Successful Steals Create Parallelism

4

3

2

2

1 P1

P2

P2 %rip

P3

P3 %rip

P3 resumes fib(3)

mid-execution.

P1 %rip

Example:

fib(4)

P1 P2 P3

4

2 3

2

1

© 2018-2023 MIT Algorithm Engineering Instructors 50

Views of stack

4 4

2

4

3

Cilk supports C’s rule for pointers: A pointer to stack space

can be passed from parent to child, but not from child to parent.

Cilk’s cactus stack supports multiple

views in parallel.

Cactus Stack

P1 P2 P3
4

3

2

2

1 P1

P2P3

3

2

1

© 2018-2023 MIT Algorithm Engineering Instructors 51

int fib(int n) {

if (n < 2) return n;

int x, y;

cilk_scope {

x = cilk_spawn fib(n-1);

y = fib(n-2);

} // sync

return (x + y);

}

Syncs (cilk_scope)

4

3

2

2

1

0P1

P1 %rip

P2

P2 %rip

P3

P3 %rip

Example:

fib(4)

© 2018-2023 MIT Algorithm Engineering Instructors 52

int fib(int n) {

if (n < 2) return n;

int x, y;

cilk_scope {

x = cilk_spawn fib(n-1);

y = fib(n-2);

} // sync

return (x + y);

}

Syncs (cilk_scope)

4

3

2

2

1

0P1

P1 %rip

P2

P2 %rip

P3

P3 %rip Sync?

Example:

fib(4)

© 2018-2023 MIT Algorithm Engineering Instructors 53

int fib(int n) {

if (n < 2) return n;

int x, y;

cilk_scope {

x = cilk_spawn fib(n-1);

y = fib(n-2);

} // sync

return (x + y);

}

Syncs (cilk_scope)

4

3

2

2

1

0P1

P1 %rip

P2

P2 %rip

P3

P3 %rip Sync?

Example:

fib(4)

© 2018-2023 MIT Algorithm Engineering Instructors 54

int fib(int n) {

if (n < 2) return n;

int x, y;

cilk_scope {

x = cilk_spawn fib(n-1);

y = fib(n-2);

} // sync

return (x + y);

}

Syncs (cilk_scope)

4

3

2

2

1

0P1

P1 %rip

P2

P2 %rip

P3

P3 %rip Can’t sync

yet!

Example:

fib(4)

© 2018-2023 MIT Algorithm Engineering Instructors 55

int fib(int n) {

if (n < 2) return n;

int x, y;

cilk_scope {

x = cilk_spawn fib(n-1);

y = fib(n-2);

} // sync

return (x + y);

}

Syncs (cilk_scope)

4

3

2

2

1

0P1

P1 %rip

P2

P2 %rip

Example:

fib(4)

© 2018-2023 MIT Algorithm Engineering Instructors 56

int fib(int n) {

if (n < 2) return n;

int x, y;

cilk_scope {

x = cilk_spawn fib(n-1);

y = fib(n-2);

}

return (x + y);

}

Putting Everything Together

P1

P2

P3

Cactus stack

Workers

4

3

2

2

1

0

© 2018-2023 MIT Algorithm Engineering Instructors 57

int fib(int n) {

if (n < 2) return n;

int x, y;

cilk_scope {

x = cilk_spawn fib(n-1);

y = fib(n-2);

}

return (x + y);

}

Putting Everything Together

P1

P2

P3

Cactus stack

%rip

Workers

4

3

2

2

1

0

%rip

%rip

© 2018-2023 MIT Algorithm Engineering Instructors 58

int fib(int n) {

if (n < 2) return n;

int x, y;

cilk_scope {

x = cilk_spawn fib(n-1);

y = fib(n-2);

}

return (x + y);

}

Putting Everything Together

P1

P2

P3

Cactus stack

%rsp

%rip

Workers

4

3

2

2

1

0

%rsp

%rip

%rsp

%rip

© 2018-2023 MIT Algorithm Engineering Instructors 59

int fib(int n) {

if (n < 2) return n;

int x, y;

cilk_scope {

x = cilk_spawn fib(n-1);

y = fib(n-2);

}

return (x + y);

}

Putting Everything Together

P1

P2

P3

%rbx, %r10, …

%rbx, %r10, …

%rbx, %r10, …

Cactus stack

Processor

state %rsp

%rip

Workers

4

3

2

2

1

0

%rsp

%rip

%rsp

%rip

© 2018-2023 MIT Algorithm Engineering Instructors 60

int fib(int n) {

if (n < 2) return n;

int x, y;

cilk_scope {

x = cilk_spawn fib(n-1);

y = fib(n-2);

}

return (x + y);

}

Putting Everything Together

P1

P2

P3

%rbx, %r10, …

%rbx, %r10, …

%rbx, %r10, …

Cactus stack

Processor

state

Deque

%rsp

%rip

Workers

4

3

2

2

1

0

%rsp

%rip

%rsp

%rip

© 2018-2023 MIT Algorithm Engineering Instructors 61

Required Functionalities

• Each worker needs to keep track of its own
execution context, including work that it is
responsible for / available to be stolen.

• After a successful steal, a worker can
resume the stolen function mid-execution.

• Upon a sync, a worker needs to know
whether there is any spawned subroutine
still executing on another worker.

© 2018-2023 MIT Algorithm Engineering Instructors 62

*henceforth simply referred to as the frame

Cilk Runtime Data Structures

The Cilk runtime utilizes three basic data
structures as workers execute work:

• Worker deques to keep track of
subroutines which are being executed or
available to steal.

• A Cilk stack frame structure* to represent
each spawning function (Cilk function) and
store its execution context.

• A full-frame tree to represent function
instances that have ever been stolen (to
support true parallel execution).

© 2018-2023 MIT Algorithm Engineering Instructors 63

Division of Labor

The work-first principle guides the division of the Cilk
runtime between the compiler and the runtime library.

Compiler
• Manages a handful of light-weight data structures

(e.g., Cilk stack frames and deques).
• Implements optimized fast paths for execution of

functions when no steals have occurred (i.e., no actual
parallelism has been realized).

Runtime library
• Manages the more heavy-weight data structures (e.g.,

the full-frame tree).
• Handles slow paths of execution (e.g., when a steal

occurs).

© 2018-2023 MIT Algorithm Engineering Instructors 64

SPAWNS AND STEALS:
DEQUES & CILK STACK

FRAMES

© 2018-2023 MIT Algorithm Engineering Instructors 65

Deque of Frames

Each Cilk worker maintains a deque of
references to Cilk Stack frames* containing
work available to be stolen.

Cactus stack

Deque 4

3

2

P1
head

tail

Worker

current

*We’ll discuss what these
references are in a few slides.

P1

© 2018-2023 MIT Algorithm Engineering Instructors 66

Spawn

When spawning, the current frame is pushed
onto the bottom of the deque.

Cactus stack

Deque 4

3

2

P1
head

tail

Worker

current

P1

© 2018-2023 MIT Algorithm Engineering Instructors 67

Spawn

When spawning, the current frame is pushed
onto the bottom of the deque.

Cactus stack

Deque 4

3

2

P1
head

tail

Worker

1
current

P1

© 2018-2023 MIT Algorithm Engineering Instructors 68

Spawn

When spawning, the current frame is pushed
onto the bottom of the deque.

Cactus stack

Deque 4

3

2

P1
head

tail

Worker

1
current

P1

© 2018-2023 MIT Algorithm Engineering Instructors 69

Spawn

When spawning, the current frame is pushed
onto the bottom of the deque.

Cactus stack

Deque 4

3

2

P1
head

tail

Worker

1
current

P1

© 2018-2023 MIT Algorithm Engineering Instructors 70

Spawn

When spawning, the current frame is pushed
onto the bottom of the deque.

Cactus stack

Deque 4

3

2

P1
head

tail

Worker

1
current

P1

© 2018-2023 MIT Algorithm Engineering Instructors 71

Return from Spawn

When returning from a spawn, the current
frame is popped from the bottom of the deque.

Cactus stack

Deque 4

3

2

P1
head

tail

Worker

1
current

P1

© 2018-2023 MIT Algorithm Engineering Instructors 72

Return from Spawn

When returning from a spawn, the current
frame is popped from the bottom of the deque.

Cactus stack

Deque 4

3

2

P1
head

tail

Worker

1
current

P1

© 2018-2023 MIT Algorithm Engineering Instructors 73

Return from Spawn

When returning from a spawn, the current
frame is popped from the bottom of the deque.

Cactus stack

Deque 4

3

2

P1
head

tail

Worker

1
current

P1

© 2018-2023 MIT Algorithm Engineering Instructors 74

Return from Spawn

When returning from a spawn, the current
frame is popped from the bottom of the deque.

Cactus stack

Deque 4

3

2

P1
head

tail

Worker

1
current

P1

© 2018-2023 MIT Algorithm Engineering Instructors 75

Return from Spawn

When returning from a spawn, the current
frame is popped from the bottom of the deque.

Cactus stack

Deque 4

3

2

P1
head

tail

Worker

current

P1

© 2018-2023 MIT Algorithm Engineering Instructors 76

Stealing Frames

Cactus stack

Deque

4

3

2

P1
head

tail

Worker

current

DequeP2
head

tail

Thief

current

Workers operate on the bottom of the deque, while thieves try

to steal work from the top of the deque.

© 2018-2023 MIT Algorithm Engineering Instructors 77

Stealing Frames

Cactus stack

Deque

4

3

2

P1
head

tail

Worker

current

DequeP2
head

tail

Thief

current

Workers operate on the bottom of the deque, while thieves try

to steal work from the top of the deque.

© 2018-2023 MIT Algorithm Engineering Instructors 78

Stealing Frames

Cactus stack

Deque

4

3

2

P1
head

tail

Worker

current

DequeP2
head

tail

Thief

current

Workers operate on the bottom of the deque, while thieves try

to steal work from the top of the deque.

© 2018-2023 MIT Algorithm Engineering Instructors 79

Stealing Frames

Cactus stack

Deque

4

3

2

P1
head

tail

Worker

current

DequeP2
head

tail

Thief

current

Some coordination

is required.

Workers operate on the bottom of the deque, while thieves try

to steal work from the top of the deque.

© 2018-2023 MIT Algorithm Engineering Instructors 80

Synchronizing Thieves and Workers

Cilk uses a mutex associated with each deque to perform

synchronization.

Cactus stack

Deque

4

3

2

P1
head

tail

Worker

current

DequeP2
head

tail

Thief

current

© 2018-2023 MIT Algorithm Engineering Instructors 81

Synchronizing Thieves and Workers

Cilk uses a mutex associated with each deque to perform

synchronization.

Cactus stack

Deque

4

3

2

P1
head

tail

Worker

current

DequeP2
head

tail

Thief

current

🔒

🔒

© 2018-2023 MIT Algorithm Engineering Instructors 82

Synchronizing Thieves and Workers

Cilk uses a mutex associated with each deque to perform

synchronization.

Cactus stack

Deque

4

3

2

P1
head

tail

Worker

current

DequeP2
head

tail

Thief

current

🔒

🔒

Question: Is it more important to

optimize the operations of workers

or those of thieves?

© 2018-2023 MIT Algorithm Engineering Instructors 83

Synchronizing Thieves and Workers

Cilk uses a mutex associated with each deque to perform

synchronization.

Cactus stack

Deque

4

3

2

P1
head

tail

Worker

current

DequeP2
head

tail

Thief

current

🔒

🔒

Question: Is it more important to

optimize the operations of workers

or those of thieves? Answer: Operations

of workers.

© 2018-2023 MIT Algorithm Engineering Instructors 84

Popping the Deque
36.1

When a worker is about to return from a
spawned function, it tries to to pop the stack
frame from the tail of the deque. There are
two possible outcomes:
1. If the pop succeeds, then the execution

continues as normal.
2. If the pop fails, then the worker is out of

work to do, and it becomes a thief and tries
to steal.

© 2018-2023 MIT Algorithm Engineering Instructors 85

Popping the Deque
36.2

When a worker is about to return from a
spawned function, it tries to to pop the stack
frame from the tail of the deque. There are
two possible outcomes:
1. If the pop succeeds, then the execution

continues as normal.
2. If the pop fails, then the worker is out of

work to do, and it becomes a thief and tries
to steal.

Question: Which case
is more important to
optimize?

© 2018-2023 MIT Algorithm Engineering Instructors 86

Popping the Deque
36.3

When a worker is about to return from a
spawned function, it tries to to pop the stack
frame from the tail of the deque. There are
two possible outcomes:
1. If the pop succeeds, then the execution

continues as normal.
2. If the pop fails, then the worker is out of

work to do, and it becomes a thief and tries
to steal.

Question: Which case
is more important to
optimize?

Answer: Case 1,
successful pop.

© 2018-2023 MIT Algorithm Engineering Instructors 87

bool steal() {

lock(L);

head++;

if (head > tail) {

head--;

unlock(L);

return FAILURE;

}

unlock(L);

return SUCCESS;

}

The THE Protocol
37

Worker protocol

Thief protocol

The worker and the thief
coordinate using
the THE protocol

void push() { tail++; }

bool pop() {

tail--;

if (head > tail) {

tail++;

lock(L);

tail--;

if (head > tail) {

tail++;

unlock(L);

return FAILURE;

}

unlock(L);

}

return SUCCESS;

}

© 2018-2023 MIT Algorithm Engineering Instructors 88

bool steal() {

lock(L);

head++;

if (head > tail) {

head--;

unlock(L);

return FAILURE;

}

unlock(L);

return SUCCESS;

}

The THE Protocol
38

Worker protocol

Thief protocol

void push() { tail++; }

bool pop() {

tail--;

if (head > tail) {

tail++;

lock(L);

tail--;

if (head > tail) {

tail++;

unlock(L);

return FAILURE;

}

unlock(L);

}

return SUCCESS;

}

Observation I: Synchronization
is only necessary when the

deque is almost empty.

© 2018-2023 MIT Algorithm Engineering Instructors 89

bool steal() {

lock(L);

head++;

if (head > tail) {

head--;

unlock(L);

return FAILURE;

}

unlock(L);

return SUCCESS;

}

The THE Protocol
39

Worker protocol

Thief protocol

void push() { tail++; }

bool pop() {

tail--;

if (head > tail) {

tail++;

lock(L);

tail--;

if (head > tail) {

tail++;

unlock(L);

return FAILURE;

}

unlock(L);

}

return SUCCESS;

}

Observation II: The pop
operation is more likely to

succeed than fail.

© 2018-2023 MIT Algorithm Engineering Instructors 90

bool steal() {

lock(L);

head++;

if (head > tail) {

head--;

unlock(L);

return FAILURE;

}

unlock(L);

return SUCCESS;

}

The THE Protocol
40.1

Worker protocol

Thief protocol

void push() { tail++; }

bool pop() {

tail--;

if (head > tail) {

tail++;

lock(L);

tail--;

if (head > tail) {

tail++;

unlock(L);

return FAILURE;

}

unlock(L);

}

return SUCCESS;

}

The Work-First
Principle: Optimize the
operations of workers.

© 2018-2023 MIT Algorithm Engineering Instructors 91

bool steal() {

lock(L);

head++;

if (head > tail) {

head--;

unlock(L);

return FAILURE;

}

unlock(L);

return SUCCESS;

}

The THE Protocol
40.2

Worker protocol

Thief protocol

void push() { tail++; }

bool pop() {

tail--;

if (head > tail) {

tail++;

lock(L);

tail--;

if (head > tail) {

tail++;

unlock(L);

return FAILURE;

}

unlock(L);

}

return SUCCESS;

}

The Work-First
Principle: Optimize the
operations of workers.

Workers pop the
deque optimistically…

© 2018-2023 MIT Algorithm Engineering Instructors 92

bool steal() {

lock(L);

head++;

if (head > tail) {

head--;

unlock(L);

return FAILURE;

}

unlock(L);

return SUCCESS;

}

The THE Protocol
40.3

Worker protocol

Thief protocol

void push() { tail++; }

bool pop() {

tail--;

if (head > tail) {

tail++;

lock(L);

tail--;

if (head > tail) {

tail++;

unlock(L);

return FAILURE;

}

unlock(L);

}

return SUCCESS;

}

The Work-First
Principle: Optimize the
operations of workers.

Workers pop the
deque optimistically…

…and only grab the deque’s lock
if the deque appears to be empty.

© 2018-2023 MIT Algorithm Engineering Instructors 93

bool steal() {

lock(L);

head++;

if (head > tail) {

head--;

unlock(L);

return FAILURE;

}

unlock(L);

return SUCCESS;

}

The THE Protocol
40.4

Worker protocol

Thief protocol

void push() { tail++; }

bool pop() {

tail--;

if (head > tail) {

tail++;

lock(L);

tail--;

if (head > tail) {

tail++;

unlock(L);

return FAILURE;

}

unlock(L);

}

return SUCCESS;

}

The Work-First
Principle: Optimize the
operations of workers.

Workers pop the
deque optimistically…

…and only grab the deque’s lock
if the deque appears to be empty.

Thieves always
grab the lock.

© 2018-2023 MIT Algorithm Engineering Instructors 94

Successful Steal

Workers operate on the bottom of the deque, while thieves try

to steal work from the top of the deque.

Cactus stack

Deque

4

3

2

P1
head

tail

Worker

current

DequeP2
head

tail

Thief

current

© 2018-2023 MIT Algorithm Engineering Instructors 95

Successful Steal

Workers operate on the bottom of the deque, while thieves try

to steal work from the top of the deque.

Cactus stack

Deque

4

3

2

P1
head

tail

Worker

current

DequeP2
head

tail

Thief

current

© 2018-2023 MIT Algorithm Engineering Instructors 96

Successful Steal

Workers operate on the bottom of the deque, while thieves try

to steal work from the top of the deque.

Cactus stack

Deque

4

3

2

P1
head

tail

Worker

current

DequeP2
head

tail

Thief

current

© 2018-2023 MIT Algorithm Engineering Instructors 97

Successful Steal

Workers operate on the bottom of the deque, while thieves try

to steal work from the top of the deque.

Cactus stack

Deque

4

3

2

2

P1
head

tail

Worker

current

DequeP2
head

tail

Thief

current

Need to set up the thief’s
stack and processor state
after a successful steal.

© 2018-2023 MIT Algorithm Engineering Instructors 98

Saving and Restoring Processor State

To save and restore processor state, the Cilk compiler
allocates a local buffer in each frame that spawns.

x = cilk_spawn fib(n-1);

Cilk code

BUFFER ctx;
SAVE_STATE(&ctx);
if (!setjmp(&ctx))

x = fib(n-1);
// (continuation)

Compiled pseudocode

© 2018-2023 MIT Algorithm Engineering Instructors 99

Saving and Restoring Processor State

To save and restore processor state, the Cilk compiler
allocates a local buffer in each frame that spawns.

x = cilk_spawn fib(n-1);

Cilk code

BUFFER ctx;
SAVE_STATE(&ctx);
if (!setjmp(&ctx))

x = fib(n-1);
// (continuation)

Compiled pseudocode

Buffer to store
processor state.

© 2018-2023 MIT Algorithm Engineering Instructors 100

Saving and Restoring Processor State

To save and restore processor state, the Cilk compiler
allocates a local buffer in each frame that spawns.

x = cilk_spawn fib(n-1);

Cilk code

BUFFER ctx;
SAVE_STATE(&ctx);
if (!setjmp(&ctx))

x = fib(n-1);
// (continuation)

Compiled pseudocode

Buffer to store
processor state.

Save processor state into
ctx, and allow a worker to
resume the continuation.

© 2018-2023 MIT Algorithm Engineering Instructors 101

Deque References to Frames

Worker deques store references to the buffers in each frame,

from which thieves can retrieve processor state.

Cactus stack

Deque

4

3

2

P1
head

tail

Worker

current

DequeP2
head

tail

Thief

current

ctx

ctx

ctx

© 2018-2023 MIT Algorithm Engineering Instructors 102

Deque References to Frames

Worker deques store references to the buffers in each frame,

from which thieves can retrieve processor state.

Cactus stack

Deque

4

3

2

P1
head

tail

Worker

current

DequeP2
head

tail

Thief

current

ctx

ctx

ctx

© 2018-2023 MIT Algorithm Engineering Instructors 103

Deque References to Frames

Worker deques store references to the buffers in each frame,

from which thieves can retrieve processor state.

Cactus stack

Deque

4

3

2

P1
head

tail

Worker

current

DequeP2
head

tail

Thief

current

ctx

ctx

ctx

%rbx, %r10, …

© 2018-2023 MIT Algorithm Engineering Instructors 104

SYNCS:
THE FULL-FRAME TREE

© 2018-2023 MIT Algorithm Engineering Instructors 105

int fib(int n) {

if (n < 2) return n;

int x, y;

cilk_scope {

x = cilk_spawn fib(n-1);

y = fib(n-2);

}

return (x + y);

}

Semantics of Sync

Example:

fib(4)

2

1P2

A cilk_scope waits on child frames, not on workers.

3

2

0P1

P3

4
Can’t sync

yet!

© 2018-2023 MIT Algorithm Engineering Instructors 106

Nested Synchronization

called

spawned

spawned spawned

spawnedspawned

calledspawned

spawned

P1

P2

P3

P5

Cilk supports nested synchronization, where a frame
waits only on its child subcomputations.

called

Waiting on
3 children.

spawned spawned

spawned

P4

Waiting on
2 children.

© 2018-2023 MIT Algorithm Engineering Instructors 107

Nested Synchronization

called

spawned

spawned spawned

spawnedspawned

calledspawned

spawned

P1

P2

P3

P5

Cilk supports nested synchronization, where a frame
waits only on its child subcomputations.

called

Waiting on
3 children.

spawned spawned

spawned

P4

Waiting on
2 children.

How does Cilk keep track of

who’s waiting on whom?

© 2018-2023 MIT Algorithm Engineering Instructors 108

Full-Frame Tree

called

spawned

spawned spawned

spawnedspawned

calledspawned

spawned

P1

P2

P3

P5
called

spawned spawned

spawned

P4

The Cilk runtime maintains a tree of full frames to keep
track of synchronization information.

Processors work
on active frames.

Other frames are
suspended.

Each full frame
corresponds with at least

one function frame.

© 2018-2023 MIT Algorithm Engineering Instructors 109

Full-Frame Data

P1 P2 P3

To maintain the state of the running program,
each full frame maintains:

• A join counter of the
number of (unsynched)
child frames.

• References to parent
and child full frames.

• References into the
corresponding Cilk
stack frames on the
cactus stack.

spawned

spawned

called

spawned

called

spawned

spawned

called

called

called

spawned

called

© 2018-2023 MIT Algorithm Engineering Instructors 110

Maintaining the Full-Frame Tree

P1 P2 P3

Let’s see how the tree structure is maintained.

spawned

called

spawned

called

© 2018-2023 MIT Algorithm Engineering Instructors 111

Maintaining the Full-Frame Tree

P1 P2 P3

Let’s see how the tree structure is maintained.

Steal!

spawned

called

spawned

called

© 2018-2023 MIT Algorithm Engineering Instructors 112

Maintaining the Full-Frame Tree

P1 P2 P3

Let’s see how the tree structure is maintained.

Steal!

spawned

called

spawned

called

© 2018-2023 MIT Algorithm Engineering Instructors 113

Maintaining the Full-Frame Tree

P1 P2 P3

Let’s see how the tree structure is maintained.

Steal!

spawned

called

spawned

called

© 2018-2023 MIT Algorithm Engineering Instructors 114

Maintaining the Full-Frame Tree

P1 P2 P3

Let’s see how the tree structure is maintained.

Steal!

spawned

called

spawned

called

The thief steals the
full frame and creates
a new full frame for

the victim.

© 2018-2023 MIT Algorithm Engineering Instructors 115

Maintaining the Full-Frame Tree

P1 P2 P3

Let’s see how the tree structure is maintained.

Steal!

spawned

called

spawned

called

The thief steals the
full frame and creates
a new full frame for

the victim.

© 2018-2023 MIT Algorithm Engineering Instructors 116

Maintaining the Full-Frame Tree

P1 P2 P3

Let’s see how the tree structure is maintained.

Steal!

spawned

called

spawned

called

The thief steals the
full frame and creates
a new full frame for

the victim.

The victim’s new full
frame is a child of the

stolen full frame.

© 2018-2023 MIT Algorithm Engineering Instructors 117

Maintaining the Full-Frame Tree

P1 P2 P3

Let’s see how the tree structure is maintained.

spawned

called

The thief steals the
full frame and creates
a new full frame for

the victim.
spawned

called

spawned

called
The victim’s new full
frame is a child of the

stolen full frame.

© 2018-2023 MIT Algorithm Engineering Instructors 118

Maintaining the Full-Frame Tree

P1 P2 P3

Let’s see how the tree structure is maintained.

Steal!
spawned

called

The thief steals the
full frame and creates
a new full frame for

the victim.
spawned

called

spawned

called
The victim’s new full
frame is a child of the

stolen full frame.

© 2018-2023 MIT Algorithm Engineering Instructors 119

spawned

called

Maintaining the Full-Frame Tree

P1 P2 P3

Let’s see how the tree structure is maintained.

Steal!
spawned

called

spawned

called

The thief steals the
full frame and creates
a new full frame for

the victim.

The victim’s new full
frame is a child of the

stolen full frame.

© 2018-2023 MIT Algorithm Engineering Instructors 120

spawned

called

Maintaining the Full-Frame Tree

P1 P2 P3

Let’s see how the tree structure is maintained.

Steal!
spawned

called

spawned

called

The thief steals the
full frame and creates
a new full frame for

the victim.

The victim’s new full
frame is a child of the

stolen full frame.

© 2018-2023 MIT Algorithm Engineering Instructors 121

spawned

called

Maintaining the Full-Frame Tree

P1 P2 P3

Let’s see how the tree structure is maintained.

Steal!
spawned

called

spawned

called

The thief steals the
full frame and creates
a new full frame for

the victim.

The victim’s new full
frame is a child of the

stolen full frame.

© 2018-2023 MIT Algorithm Engineering Instructors 122

spawned

called

Maintaining the Full-Frame Tree

P1 P2 P3

Let’s see how the tree structure is maintained.

Steal!
spawned

called

spawned

called

The thief steals the
full frame and creates
a new full frame for

the victim.

The victim’s new full
frame is a child of the

stolen full frame.

© 2018-2023 MIT Algorithm Engineering Instructors 123

spawned

called

Maintaining the Full-Frame Tree

P1 P2 P3

Let’s see how the tree structure is maintained.

Steal!
spawned

called

spawned

called

The thief steals the
full frame and creates
a new full frame for

the victim.

The victim’s new full
frame is a child of the

stolen full frame.

© 2018-2023 MIT Algorithm Engineering Instructors 124

Maintaining the Full-Frame Tree

P1 P2 P3

Let’s see how the tree structure is maintained.

spawned

called

spawned

called

spawned

called

© 2018-2023 MIT Algorithm Engineering Instructors 125

Maintaining the Full-Frame Tree

P1 P2 P3

Let’s see how the tree structure is maintained.

spawned

called

spawned

called

spawned

called

Sync?

© 2018-2023 MIT Algorithm Engineering Instructors 126

Maintaining the Full-Frame Tree

P1 P2 P3

Let’s see how the tree structure is maintained.

spawned

called

spawned

called

spawned

called

Sync?

A full frame suspends at
a sync if it has

outstanding child frames.

© 2018-2023 MIT Algorithm Engineering Instructors 127

Maintaining the Full-Frame Tree

P1 P2 P3

Let’s see how the tree structure is maintained.

spawned

called

spawned

called

spawned

called

Sync?

A full frame suspends at
a sync if it has

outstanding child frames.

© 2018-2023 MIT Algorithm Engineering Instructors 128

Maintaining the Full-Frame Tree

P1 P2 P3

Let’s see how the tree structure is maintained.

spawned

called

spawned

called

spawned

called

Suspend

A full frame suspends at
a sync if it has

outstanding child frames.

© 2018-2023 MIT Algorithm Engineering Instructors 129

Maintaining the Full-Frame Tree

P1 P2 P3

Let’s see how the tree structure is maintained.

spawned

called

spawned

called

spawned

called

Suspend

A full frame suspends at
a sync if it has

outstanding child frames.

© 2018-2023 MIT Algorithm Engineering Instructors 130

Maintaining the Full-Frame Tree

P1 P3

Let’s see how the tree structure is maintained.

spawned

called

spawned

called

spawned

called

A full frame suspends at
a sync if it has

outstanding child frames.

© 2018-2023 MIT Algorithm Engineering Instructors 131

Common Case for Sync

Question: If the program has ample
parallelism, what do we expect typically
happens when the program execution reaches
the end of a cilk_scope?

© 2018-2023 MIT Algorithm Engineering Instructors 132

Common Case for Sync

Question: If the program has ample
parallelism, what do we expect typically
happens when the program execution reaches
the end of a cilk_scope?

Answer: The executing function contains no
outstanding spawned children.

© 2018-2023 MIT Algorithm Engineering Instructors 133

Common Case for Sync

Question: If the program has ample
parallelism, what do we expect typically
happens when the program execution reaches
the end of a cilk_scope?

Answer: The executing function contains no
outstanding spawned children.

How does the
runtime optimize

for this case?

© 2018-2023 MIT Algorithm Engineering Instructors 134

Managing the Full-Frame Tree: Sync

P P PP

spawned

called

called

spawned

called
spawned

called

spawned

called

© 2018-2023 MIT Algorithm Engineering Instructors 135

Managing the Full-Frame Tree: Sync

P P PP

spawned

called

called

spawned

called
spawned

called

spawned

called

A flags field in each Cilk stack frame
maintains the frame’s status, which is

set when stolen. Only stolen
spawning frames need nontrivial sync.

© 2018-2023 MIT Algorithm Engineering Instructors 136

BUFFER ctx;
…
if (WAS_STOLEN)

if (!setjmp(&ctx))
__cilkrts_sync(&ctx);

Compiled Code for Sync

C pseudocode

cilk_scope { … };

Cilk code

Like cilk_spawn, a cilk_scope is compiled
using setjmp, in order to save the processor’s
state when the frame is suspended.

© 2018-2023 MIT Algorithm Engineering Instructors 137

BUFFER ctx;
…
if (WAS_STOLEN)

if (!setjmp(&ctx))
__cilkrts_sync(&ctx);

Compiled Code for Sync

C pseudocode

cilk_scope { … };

Cilk code

Like cilk_spawn, a cilk_scope is compiled
using setjmp, in order to save the processor’s
state when the frame is suspended.

Same buffer as
used for spawns.

© 2018-2023 MIT Algorithm Engineering Instructors 138

BUFFER ctx;
…
if (WAS_STOLEN)

if (!setjmp(&ctx))
__cilkrts_sync(&ctx);

Compiled Code for Sync

C pseudocode

cilk_scope { … };

Cilk code

Like cilk_spawn, a cilk_scope is compiled
using setjmp, in order to save the processor’s
state when the frame is suspended.

Same buffer as
used for spawns.

Call into the runtime
to suspend the frame.

© 2018-2023 MIT Algorithm Engineering Instructors 139

DESIGN CHOICES

© 2018-2023 MIT Algorithm Engineering Instructors 140

The Work-First Principle

To optimize the execution of programs with sufficient
parallelism, the implementation of the Cilk runtime
system works to maintain high work-efficiency by
abiding by the work-first principle:

Optimize for the ordinary serial
execution, at the expense of some

additional overhead in steals.

© 2018-2023 MIT Algorithm Engineering Instructors 141

Division of Labor

The work-first principle guides the division of the Cilk
runtime system between the compiler and the runtime
library.

• The compiler implements optimized fast paths for
execution of functions when no steals have occurred
(i.e., no actual parallelism has been realized).

• The runtime library handles slow paths of execution,
e.g., when a steal occurs.

© 2018-2023 MIT Algorithm Engineering Instructors 142

Division of Labor

The work-first principle guides the division of the Cilk
runtime system between the compiler and the runtime
library.

• The compiler implements optimized fast paths for
execution of functions when no steals have occurred
(i.e., no actual parallelism has been realized).

• The runtime library handles slow paths of execution,
e.g., when a steal occurs.

Examples:
• The THE protocol
• The implementation of cilk_spawn and cilk_sync
• The organization of full frames vs Cilk stack frames

© 2018-2023 MIT Algorithm Engineering Instructors 143

Choice of Whom / What to Steal

Classic randomized work-stealing:
Steal from a randomly chosen victim and steal from
the top of its deque.

© 2018-2023 MIT Algorithm Engineering Instructors 144

Choice of Whom / What to Steal

Classic randomized work-stealing:
Steal from a randomly chosen victim and steal from
the top of its deque.

• The random choice and stealing from top allow us
to amortize the cost of steals against the span
term.

© 2018-2023 MIT Algorithm Engineering Instructors 145

Choice of Whom / What to Steal

Classic randomized work-stealing:
Steal from a randomly chosen victim and steal from
the top of its deque.

• The random choice and stealing from top allow us
to amortize the cost of steals against the span
term.

• Randomness also avoids contention.

© 2018-2023 MIT Algorithm Engineering Instructors 146

Choice of Whom / What to Steal

Classic randomized work-stealing:
Steal from a randomly chosen victim and steal from
the top of its deque.

• The random choice and stealing from top allow us
to amortize the cost of steals against the span
term.

• Randomness also avoids contention.

• An old performance bug in the runtime: every
worker had a random number generator initialized
with the same seed, which leads to high contention
because everyone chose the same sequence of
victims.

© 2018-2023 MIT Algorithm Engineering Instructors 147

int foo(int n) {

int x, y;

cilk_scope {

x = cilk_spawn bar(n);

y = baz(n);

}

return x + y;

}

Spawn Semantics

Continuation-stealing (work-first): execute the
spawned child and prepare the continuation to be
stolen.

© 2018-2023 MIT Algorithm Engineering Instructors 148

int foo(int n) {

int x, y;

cilk_scope {

x = cilk_spawn bar(n);

y = baz(n);

}

return x + y;

}

Spawn Semantics

Continuation-stealing (work-first): execute the
spawned child and prepare the continuation to be
stolen.

Child-stealing (help-first): push the spawned child
onto the deque so it can be stolen and continue
executing the spawning function. Pop off spawned
children to execute when encountering a sync.

© 2018-2023 MIT Algorithm Engineering Instructors 149

cilk_scope {

for(int i=0; i<1000; i++) {

cilk_spawn foo(i);

}

}

Issues with Child-Stealing: Space

Child-stealing: create 1000 work items and push
them onto the deque before start doing any work!

Continuation-stealing: work on the spawned
iteration and let the rest of the loops to be stolen
potentially.

© 2018-2023 MIT Algorithm Engineering Instructors 150

Continuation-Stealing vs Child-Stealing

Continuation-stealing:

• Bounded space
utilization.

• Better work-efficiency.
• One-worker execution

follows that of serial
projection.

• For private caches, one
can bound the cache
misses during parallel
executions.

Child-stealing:

• Potentially unbounded
space utilization.

• Worse work-efficiency.
• One-worker execution

does NOT follow that
of serial projection.

• No proven bound on
cache misses during
parallel executions.

© 2018-2023 MIT Algorithm Engineering Instructors 151

Continuation-Stealing vs Child-Stealing

Continuation-stealing:

• Bounded space
utilization.

• Better work-efficiency.
• One-worker execution

follows that of serial
projection.

• For private caches, one
can bound the cache
misses during parallel
executions.

Child-stealing:

• Potentially unbounded
space utilization.

• Worse work-efficiency.
• One-worker execution

does NOT follow that
of serial projection.

• No proven bound on
cache misses during
parallel executions.

Only monsters steal children!

	Slide 1: Lecture 4 The Cilk Runtime System
	Slide 2: Cilk Programming
	Slide 3: Scheduling in Cilk
	Slide 4: Scheduling in Cilk
	Slide 5: Scheduling in Cilk
	Slide 6: Cilk Platform
	Slide 7: Work Stealing and the Work-First Principle
	Slide 8: Serial Execution & Stack Frames
	Slide 9: Serial Execution & Stack Frames
	Slide 10: Serial Execution & Stack Frames
	Slide 11: Serial Execution & Stack Frames
	Slide 12: Serial Execution & Stack Frames
	Slide 13: Serial Execution & Stack Frames
	Slide 14: Serial Execution & Stack Frames
	Slide 15: Serial Execution & Stack Frames
	Slide 16: Serial Execution & Stack Frames
	Slide 17: Parallel Execution
	Slide 18: Work Stealing
	Slide 19: Work Stealing
	Slide 20: Work Stealing
	Slide 21: Work Stealing
	Slide 22: Work Stealing
	Slide 23: Work Stealing
	Slide 24: Work Stealing
	Slide 25: Parallel Speedup
	Slide 26: Work-Stealing Bounds
	Slide 27: Work-Stealing Bounds
	Slide 28: Work-Stealing Bounds
	Slide 29: Work-Stealing Bounds
	Slide 30: Parallel Speedup
	Slide 31: The Work-First Principle
	Slide 32: Core Functionalities for Work Stealing
	Slide 33: Cilk’s Execution Model
	Slide 34: Workers Mirror Serial Execution
	Slide 35: Workers Mirror Serial Execution
	Slide 36: Workers Mirror Serial Execution
	Slide 37: Workers Mirror Serial Execution
	Slide 38: Workers Mirror Serial Execution
	Slide 39: Workers Mirror Serial Execution
	Slide 40: Workers Mirror Serial Execution
	Slide 41: Workers Mirror Serial Execution
	Slide 42: Workers Mirror Serial Execution
	Slide 43: Successful Steals Create Parallelism
	Slide 44: Successful Steals Create Parallelism
	Slide 45: Successful Steals Create Parallelism
	Slide 46: Successful Steals Create Parallelism
	Slide 47: Successful Steals Create Parallelism
	Slide 48: Successful Steals Create Parallelism
	Slide 49: Successful Steals Create Parallelism
	Slide 50: Cactus Stack
	Slide 51: Syncs (cilk_scope)
	Slide 52: Syncs (cilk_scope)
	Slide 53: Syncs (cilk_scope)
	Slide 54: Syncs (cilk_scope)
	Slide 55: Syncs (cilk_scope)
	Slide 56: Putting Everything Together
	Slide 57: Putting Everything Together
	Slide 58: Putting Everything Together
	Slide 59: Putting Everything Together
	Slide 60: Putting Everything Together
	Slide 61: Required Functionalities
	Slide 62: Cilk Runtime Data Structures
	Slide 63: Division of Labor
	Slide 64: Spawns and Steals: Deques & Cilk Stack Frames
	Slide 65: Deque of Frames
	Slide 66: Spawn
	Slide 67: Spawn
	Slide 68: Spawn
	Slide 69: Spawn
	Slide 70: Spawn
	Slide 71: Return from Spawn
	Slide 72: Return from Spawn
	Slide 73: Return from Spawn
	Slide 74: Return from Spawn
	Slide 75: Return from Spawn
	Slide 76: Stealing Frames
	Slide 77: Stealing Frames
	Slide 78: Stealing Frames
	Slide 79: Stealing Frames
	Slide 80: Synchronizing Thieves and Workers
	Slide 81: Synchronizing Thieves and Workers
	Slide 82: Synchronizing Thieves and Workers
	Slide 83: Synchronizing Thieves and Workers
	Slide 84: Popping the Deque
	Slide 85: Popping the Deque
	Slide 86: Popping the Deque
	Slide 87: The THE Protocol
	Slide 88: The THE Protocol
	Slide 89: The THE Protocol
	Slide 90: The THE Protocol
	Slide 91: The THE Protocol
	Slide 92: The THE Protocol
	Slide 93: The THE Protocol
	Slide 94: Successful Steal
	Slide 95: Successful Steal
	Slide 96: Successful Steal
	Slide 97: Successful Steal
	Slide 98: Saving and Restoring Processor State
	Slide 99: Saving and Restoring Processor State
	Slide 100: Saving and Restoring Processor State
	Slide 101: Deque References to Frames
	Slide 102: Deque References to Frames
	Slide 103: Deque References to Frames
	Slide 104: Syncs: The Full-Frame Tree
	Slide 105: Semantics of Sync
	Slide 106: Nested Synchronization
	Slide 107: Nested Synchronization
	Slide 108: Full-Frame Tree
	Slide 109: Full-Frame Data
	Slide 110: Maintaining the Full-Frame Tree
	Slide 111: Maintaining the Full-Frame Tree
	Slide 112: Maintaining the Full-Frame Tree
	Slide 113: Maintaining the Full-Frame Tree
	Slide 114: Maintaining the Full-Frame Tree
	Slide 115: Maintaining the Full-Frame Tree
	Slide 116: Maintaining the Full-Frame Tree
	Slide 117: Maintaining the Full-Frame Tree
	Slide 118: Maintaining the Full-Frame Tree
	Slide 119: Maintaining the Full-Frame Tree
	Slide 120: Maintaining the Full-Frame Tree
	Slide 121: Maintaining the Full-Frame Tree
	Slide 122: Maintaining the Full-Frame Tree
	Slide 123: Maintaining the Full-Frame Tree
	Slide 124: Maintaining the Full-Frame Tree
	Slide 125: Maintaining the Full-Frame Tree
	Slide 126: Maintaining the Full-Frame Tree
	Slide 127: Maintaining the Full-Frame Tree
	Slide 128: Maintaining the Full-Frame Tree
	Slide 129: Maintaining the Full-Frame Tree
	Slide 130: Maintaining the Full-Frame Tree
	Slide 131: Common Case for Sync
	Slide 132: Common Case for Sync
	Slide 133: Common Case for Sync
	Slide 134: Managing the Full-Frame Tree: Sync
	Slide 135: Managing the Full-Frame Tree: Sync
	Slide 136: Compiled Code for Sync
	Slide 137: Compiled Code for Sync
	Slide 138: Compiled Code for Sync
	Slide 139: Design Choices
	Slide 140: The Work-First Principle
	Slide 141: Division of Labor
	Slide 142: Division of Labor
	Slide 143: Choice of Whom / What to Steal
	Slide 144: Choice of Whom / What to Steal
	Slide 145: Choice of Whom / What to Steal
	Slide 146: Choice of Whom / What to Steal
	Slide 147: Spawn Semantics
	Slide 148: Spawn Semantics
	Slide 149: Issues with Child-Stealing: Space
	Slide 150: Continuation-Stealing vs Child-Stealing
	Slide 151: Continuation-Stealing vs Child-Stealing

