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Determinacy Races

p

A Cilk program contains a determinacy
race if two logically parallel threads
access the same shared location, and
one of the accesses is a write.

read x read x
>< read/write race
write x write x Write/write race
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A Cilk Program with a
Determinacy Race

anE wt

cilk void foo ()

{ main ()
X++;
return;
}
cilk int main() foo () foo ()
{
g spawn tree

spawn fool();

spawn fool();

sync;

printf{"x is 3q\n", X} -
return 1;



The Effect of a Determinacy Race

Thread 1 Thread 2 Thread 1 Thread 2

read X read x
WEite X read X
read x write o
wWrite X write x
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* A determinacy race can cause a Cilk
program to behave nondeterministically.

* A determinacy race is usually a bug.




Races in N-queens Puzzle

cilk char *nqueens (char *board, int n, int row)
{ char *new_board;

new_board = malloc (row+l) ;
memcpy (new_board, board,
P {4 =
{

TOowW) ;
(s 5 < n i S

new_board|[row] = j;
spawn ngueens (new_board, n, row+l);
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Races in N-queens Puzzle

cilk char *nqueens (char *board, int n, int row)
{ char *new_board;

new_board =

memcpy (new_board,
EoE (7 =

{

malloc (row+l) ;
]éoard, )row) . | Race between
Qi ans i) child reading &

g parent writing
new_board[row] gt

spawn ngqueens (new_board, n, row+l);
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The Nondeterminator

Cilk program + Input data set l

FAIL

PASS

v V

Information Every schedul-
localizing a ing produces
determinacy race. the same result.

A debugging tool, not a verifier.




Provable Performance

Theorem. For a Cilk program that runs in
I’ time serially and uses v shared-memory
locations, the Nondeterminator runs in

O(T av,v)) time, where o 1s Tarjan’s
functional inverse of Ackermann’s function.

e The Nondeterminator is a serial program.
e As a practical matter, ou(v,v) < 4.

* The Nondeterminator uses O(v) space.



Related Work
Algorithm Time/Access Space

English-Hebrew O(pt) O(vt + min(np,vip))
[Nudler/Rudolph 1986]
Task recycling O(1) O(vt + 1?)
[Dinning/Schonberg 1990]
Offset-span labeling O(p) O(v + min(np,vp))
[Mellor-Crummey 1991]
SP-bags O(ov,v)) O(v)
[Feng/Leiserson 1996] - amortized

n = number of threads = max number of parallel threads

v = number of shared locations = max depth of nested parallelism
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e SERIES-PARALLEL DAGS




~ Series-Parallel Dags

Base graph:
* source § § e—> |
e sink ¢

Series composition:

s — st
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Parallel composition: |




A Cilk Dag is Series-Parallel

F: eilk int main()
{

=0
spawn foo () ; ® start node
® spawn node
| sync node
® e¢nd node

spawn fool();

printf(lsdlmaria
return 1:




Series-Parallel Parse Trees

Every series-parallel dag has a parse tree.
The least common ancestor of two threads
determines whether the threads are loglcally
in series or in parallel.

ee<e’ if LCA(e, ) is S & SI\

and e is left of ¢'. S
eelle’ if LCA(e,e)isP.| /N

A treewalk visits threads in serial execution order.



Canonical Cilk Parse Tree

e; spawn F; e; spawn F; ... e; s;b— sync block

e; spawn F; e; spawn F; ... e¢; sync;

e; spawn F; e; spawn I} ... e; sync;
. return:



* TARJAN’S LEAST COMMON
ANCESTORS ALGORITHM



Least Common Ancestors

Definition. The least common ancestor of
two nodes in a rooted tree 1s the node on the
path between them that is closest to the root.




Disjoint-Set Data Structure

2. 18 a collection of disjoint sets.
*X,Ye XimpliesXNY=0.

Three operations:

e MAKE-SET(e): 2 <« 2 U {{e}}.
eUNIONX,Y): 2«2 - {X, Y} U {XUY}.

e FIND-SET(¢): returns X € 2 such that ¢ € X.

Any sequence of 1 operations on 7 sets can be
performed in O(m o(m,n)) time [Tarjan 1975].



Tarjan’s LCA Algorithm

o e

Depth-first treewalk:

e Visit node v: S[v] ¢« MAKE-SET(v)

e Return to u from v: S[u] <= UNION(S[u],S[v])

e Encounter edge (u,v) for the second time at v:
LCA(u,v) = FIND-SET(u)



* THE SP-BAGS ALGORITHM



Shadow Spaces

Each shared-memory location / has two
corresponding shadow locations that are
updated by the SP-bags algorithm as the
Cilk program executes:

*writer[[]: ID of a procedure that wrote /.
* reader|l]: ID of a procedure that read /.

shared
memory

writer reader




S-Bags and P-Bags

S, contains ID’s of previously

executed descendants of F
that precede the current
thread.

Pg

P, contains
ID’s of previously
executed descendants

of F that operate logically .
in parallel with the current thread. N B




' The SP-Bags Algorithm

spawn procedure F:  S; ¢~ MAKE-SET(/); ) = &
sync in a procedure F: Sy = UNION(Sp,Pp); P« O
return from F'to F: PF (o UNION(PF,SF')

write location / by a procedure F:
if FIND-SET(reader(l)) is a P-bag
or FIND-SET(writer|l]) is a P-bag
then a determinacy race exists
writer|l] « F

read location / by a procedure 7
if FIND-SET(writer[l]) is a P-bag

a then a determinacy race exists

if FIND-SET(reader|l]) is an S-bag
then reader|l] <« F




Correctness of SP-Bags

Lemma. Suppose threads ¢,, ¢,, and ¢; execute
in order in the normal serial execution. Then
*¢,< e, and e Il e; implies e, Il es;
* (Pseudotransitivity)
e, Il e, and e, Il e; implies ¢, Il e.

/\\ /3,

] e‘w 6) 'l ()q ()
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