
In place shared-memory 
sorting algorithms

Chris Rinard



Quicksort History:

Invented in 1951 by Tony Hoare

Architecture of the time is in a museum now



TL;DR 

● This paper presents IPS4O: a parallel, in-place version of samplesort
● At the time of writing, Quicksort and variants are the predominantly used 

sorting alg

“You have
to outperform 
quicksort in every 
respect in order to 
replace it”



Improvements to quicksort

● Strictly in-place
● 2-3 pivots (20% better than single pivot)
● Parallel Quicksort (Tsigas, Zhang)
● Samplesort



Quicksort review

1: Choose Pivot



Quicksort review

1: Choose Pivot

2: Put pivot at its correct sorted position, all smaller elements before pivot, and all 
greater elements after pivot



Quicksort review

3: Quicksort the smaller and larger elements (left and right)



Samplesort

Basic idea: k-way Quicksort

3 Phases + recursion

1. Sampling
2. Classification
3. Distribution
4. Recurse



Sampling

1. Sample a * k - 1 randomly sampled inputs into array S.
2. Sort S
3. Pick splitters s0…sk-2 from S



Classification

1. For each element, find bucket index, and keep track of bucket size (e in bi if 
si-1< e <= si).

2. Classify each element of the input into correct bucket
3. Find memory locations of boundaries



Distribution

1. Copy elements from input array into buckets. 



IPS4O

4 Stages + recursion:

1. Sampling: bucket boundaries
2. Classification: Group input into blocks (in block, every elem in same bucket)
3. Permutation: Globally order blocks
4. Cleanup: Clean up partially filled or crossing blocks



IPS4O Sampling phase

11 13 11 17 10 11 9 3 18 4 7 18 19 3



IPS4O Sampling phase

K = 3, ɑ=2, kɑ - 1 elements

11 13 11 17 10 11 9 3 18 4 7 18 19 3

11 13 11 17 10 11 9 3 18 4 7 18 19 3



IPS4O Sampling phase

K = 3, ɑ=2, kɑ - 1 elements

11 13 11 17 10 11 9 3 18 4 7 18 19 3

11 13 11 17 10 11 9 3 18 4 7 18 19 3

1113171011 93 18 47 18 19 311



IPS4O Sampling phase

K = 3, ɑ=2, kɑ - 1 elements

11 13 11 17 10 11 9 3 18 4 7 18 19 3

11 13 11 17 10 11 9 3 18 4 7 18 19 3

11131710 11 93 18 47 18 19 311



IPS4O Sampling phase

K = 3, ɑ=2, kɑ - 1 elements

11 13 11 17 10 11 9 3 18 4 7 18 19 3

11 13 11 17 10 11 9 3 18 4 7 18 19 3

K = 3, k - 1 splitters (picked equidistantly)

11131710 11 93 18 47 18 19 311

11131710 11 93 18 47 18 19 311



IPS4O Sampling
K = 3, k - 1 splitters (picked equidistantly)

11131710 11 43 18 47 18 19 311

Create branchless decision tree, k buckets

117



Performance Hack: IPS4O bucket structure (branchless 
decision tree) 
● Eliminates branch mispredictions: use of a = (<>) ? b : c, easy to store



Performance Hack: IPS4O bucket structure (branchless 
decision tree) 
● Eliminates branch mispredictions: use of a = (<>) ? b : c, easy to store
● Better than this, you can unroll the loop



Performance Hack: IPS4O bucket structure (branchless 
decision tree) 
● Eliminates branch mispredictions: use of a = (<>) ? b : c, easy to store
● Better than this, you can unroll this loop
● In practice, authors note “up to 2x faster than std::sort”



IPS4O

4 Stages:

1. Sampling: bucket boundaries
2. Classification: Group input into blocks (in block, every elem in same bucket)
3. Permutation: Globally order blocks
4. Cleanup: Clean up partially filled or crossing blocks



IPS4O Classification
t = 2, split into t “stripes”

11131710 11 43 18 47 18 19 311



IPS4O Classification
t = 2, split into t “stripes”

1710 11 43 7 11



IPS4O Classification
t = 2, split into t “stripes”

1710 11 43 7 11

k=3, each thread has k “buffer blocks”



IPS4O Classification
t = 2, split into t “stripes”

1710 11 43 7 11

k=3, each thread has k “buffer blocks”

Block size limited -- for this case = 2

117



IPS4O Classification
t = 2, split into t “stripes”

1710 11 47 11

3

117

k=3, each thread has k “buffer blocks”

Block size limited -- for this case = 2
1 0 0



IPS4O Classification
t = 2, split into t “stripes”

1710 11 411

3,7

117

k=3, each thread has k “buffer blocks”

Block size limited -- for this case = 2
2 0 0



IPS4O Classification
t = 2, split into t “stripes”

1711 411

3,7 10

117

k=3, each thread has k “buffer blocks”

Block size limited -- for this case = 2
2 1 0



IPS4O Classification
t = 2, split into t “stripes”

17 411

3,7 10, 
11

117

k=3, each thread has k “buffer blocks”

Block size limited -- for this case = 2
2 2 0



IPS4O Classification
t = 2, split into t “stripes”

17 410 11

3,7 11

k=3, each thread has k “buffer blocks”

117

k=3, each thread has k “buffer blocks”

2 3 0



IPS4O Classification
t = 2, split into t “stripes”

410 11

173,7 11

117

k=3, each thread has k “buffer blocks”

Block size limited -- for this case = 2
2 3 1



IPS4O Classification
t = 2, split into t “stripes”

3 710 11

174 9

117

k=3, each thread has k “buffer blocks”

Block size limited -- for this case = 2
3 3 1



IPS4O

4 Stages:

1. Sampling: bucket boundaries
2. Classification: Group input into blocks (in block, every elem in same bucket)
3. Permutation: Globally order blocks
4. Cleanup: Clean up partially filled or crossing blocks



IPS4O Block Permutation

3 710 11

174 9

3 3 1

Buffer Blocks

Memory blocks

13 18

18,194,3 11

2 1 4

Goal:

1110 11 113 13 183 4 7 9 11 11



IPS4O Block Permutation

3 710 11

174 9

3 3 1

Buffer Blocks

Memory blocks

13 18

18,194,3 11

2 1 4

Goal:

1110 11 113 13 183 4 7 9 11 11

How do I find these? 



IPS4O Block Permutation

174 9

3 3 1

Buffer Blocks

Memory blocks

13 18

18,194,3 11

2 1 4

Goal:

1110 11 113 13 183 4 7 9 11 11

How do I find these? Prefix-sum! 

3 710 11



IPS4O Block Permutation
Memory blocks

13 18

Thread 0 (primary bucket 0) Thread 1 (primary bucket 1)

174 9 18,194,3 11

write0
read0 write1 read1

write2

read2

3 710 11



IPS4O Block Permutation
Memory blocks

13 18

174 9 18,194,3 11

write0 read0 write1 read1

write2

read2

Dest bucket = 0 Dest bucket = 2

Thread 0 (primary bucket 0) Thread 1 (primary bucket 1)

3 7

10 11



IPS4O Block Permutation
Memory blocks

13 18

174 9 18,194,3 11

write0

read0 write1 read1 write2 read2

Thread 0 (primary bucket 0) Thread 1 (primary bucket 1)

3 7

10 11



IPS4O Block Permutation
Memory blocks

13 18

174 9 18,194,3 11

write0

read0 write1 read1 write2 read2

Thread 0 (primary bucket 0) Thread 1 (primary bucket 1)

3 7 10 11



IPS4O Block Permutation
Memory blocks

13 18

174 9 18,194,3 11

write0

read0 write1 read1 write2 read2

Thread 0 (primary bucket 0) Thread 1 (primary bucket 1)

3 7

10 11



IPS4O Block Permutation
Memory blocks

13 18

174 9 18,194,3 11

write0

read0

write1

read1 write2 read2

B_dest = 1

Thread 0 (primary bucket 0) Thread 1 (primary bucket 1)

3 7 10 11



IPS4O Block Permutation

73 10 11

Memory blocks

13 18

Thread 1 (primary bucket 1)

174 9 18,194,3 11

write0

read0

write1

read1 write2 read2

B_dest = 1

Thread 0 (primary bucket 0) Thread 1 (primary bucket 2)



IPS4O Block Permutation

3 7 10 11

Memory blocks

13 18

Thread 1 (done) Thread 2 (done)

174 9 18,194,3 11

write0

read0

write1

read1 write2

read2

B_dest = 1



IPS4O Block Permutation

173 9

1 2 3

Buffer Blocks

Memory blocks

18,193 11

2 1 4

3 7 10 11 13 18



IPS4O

4 Stages:

1. Sampling: bucket boundaries
2. Classification: Group input into blocks (in block, every elem in same bucket)
3. Permutation: Globally order blocks
4. Cleanup: Clean up partially filled or crossing blocks



IPS4O Block Permutation

173 9

1 2 3

Buffer Blocks

Memory blocks

18,193 11

2 1 4

What’s wrong with this array? (Yes this is a question)

7 10 11 11 13 18



IPS4O Block Permutation

173 9

1 2 3

Buffer Blocks

Memory blocks

18,193 11

2 1 4

1. Bucket overlap
2. Partially filled buffers
3. Last bucket can be in swap buffer

How do we fix?7 10 11 11 13 18



IPS4O Cleanup

173 9

1 2 3

Buffer Blocks

Memory blocks

18,193 11

2 1 4

1. Bucket overlap
2. Partially filled buffers
3. Last bucket can be in swap buffer

7 10 11 11 13 18



Recursion structure



Performance Hack: Implementation of pointer arithmetic

128-bit CAS instructions (if libatomic supports these), Mutex otherwise

Why 128 bit CAS? 



Performance Hack: Implementation of pointer arithmetic

128-bit CAS instructions (if libatomic supports these), Mutex otherwise

Why 128 bit CAS -- Read and write stored in 64-bit pointers, must be updated 
together

“The measurements reported in this paper were 
performed using somewhat non-portable 
implementations that use a 128-bit 
compare-and-swap instruction specific to x86 
architectures (see also Section 6). Our portable 
variants currently use locks that incur noticeable 
overheads for inputs with only very few different 
keys. Different approaches can avoid locks 
without noticeable overhead but these would lead 
to more complicated source code.”



Performance Hack: Implementation of pointer arithmetic

128-bit CAS instructions (if libatomic supports these), Mutex otherwise

Why 128 bit CAS -- Read and write stored in 64-bit pointers, must be updated 
together

“The measurements reported in this paper were 
performed using somewhat non-portable 
implementations that use a 128-bit 
compare-and-swap instruction specific to x86 
architectures (see also Section 6). Our portable 
variants currently use locks that incur noticeable 
overheads for inputs with only very few different 
keys. Different approaches can avoid locks 
without noticeable overhead but these would lead 
to more complicated source code.”



Performance Hack?: Implementation of pointer arithmetic 
-- does this matter?



Performance Hack?: Implementation of pointer arithmetic 
-- does this matter: It depends



Performance and Portability Bugs

Try it yourself: https://github.com/ips4o/ips4o-benchmark-suite

“For the run.sh command, you need an 
installation of the Intel® Integrated 
Performance Primitives (IPP) as well as Cilk 
Plus. For Cilk Plus, you require a compiler 
supporting the Cilk Plus C++ language 
extension or you need provide your own Cilk 
Plus library which you add to the 
CMakeLists.txt file.”

https://software.intel.com/content/www/us/en/develop/tools/integrated-performance-primitives.html
https://software.intel.com/content/www/us/en/develop/tools/integrated-performance-primitives.html
https://github.com/ips4o/ips4o-benchmark-suite/blob/master/CMakeLists.txt
https://github.com/ips4o/ips4o-benchmark-suite/blob/master/CMakeLists.txt


Summary: What it takes to publish a paper on sorting 
these days

1. Incremental improvement on algorithm
2. Portable
3. 30 pages of analysis
4. Involved runtime analysis
5. Write your own scheduler
6. I/O analysis
7. Branch mispredict analysis
8. Base case optimization


