Theoretically-Efficient and
Practical Parallel In-Place
Radix Sorting

Authors: Omar Obeya, Endrias Kahssay, Edward Fan,
Julian Shun

e Introduction

o Motivation
o Related Work

e Regions Sort: a new parallel in-

place algorithm for radix sort

o Algorithm Design
o Theoretical Analysis

e EXperiments
o Setup
o Results

Motivation

Why Radix
Sort?

Takes O(n) work for fixed length
Integers.

Comparison-based sorts take
Q(n log(n)) work.

In-Place
Algorithms

What are in-place algorithms?

e Require at most sublinear
auxiliary space.

Why in-place?

e Smaller memory footprint!
e Potentially better utilization of
cache.

Radix Sort

(Most Significant Digit First

v

W
N
!
-
SN
@) |
-
AN
@) |
-
AN
@)

Radix Sort

N
—
—
-
@)
@) |
-
AN
@) |
-
AN
@)

~N g W
~O
!!
-
SN
@) |
-
@)
@) |

e Sort elements according
to one digit at a time.

-
@)
@) |

® Most significant digit to

least significant digit.

OV
o0
RN

H
oo
o

® Recurse on elements with

—
EaN
&)
\l
aN
&)

equal digits.

oo
oo
W

Terminology: Country

Country: sub-array that
will include elements
belonging to the same
bucket after sorting.

g [E BT
g) P HEEEEEH] [=

=0

Radix Sort: Subproblem

Sort elements according
to digits such that each
element is in the correct
country.

g [E BT
ourpu) P EEEEEH] [=

Serial In- 1. Find start location of
place Radix

Sort

each country
(Histogram Building).

2. Move items to the
correct country in-
place.

Histogram Building

lInput:
|
'
ISizes: | 3 4 2| |2
|
: '
Prefix 0 ; 21 s
Sum. l
I

[output: | [ofol2fofsaflsIfall

Parallel
Histogram
Building

Serial In-place Radix Sort

Initialize pointer to beginning of each l 1 1 1
country

For each country:

While (pointer not at end of country) {

While(item pointed to is not in
correct country) {

Swap item to location pointed to
in target country

Increment target country pointer

}

Increment current country pointer

3

Serial In-place Radix Sort

Initialize pointer to beginning of each
country

For each country:
While (pointer not at end of country) {

While(item pointed to is not in
correct country) {

Swap item to location pointed to

in target country

Increment target country pointer

}

Increment current country pointer

Serial In-place Radix Sort

Initialize pointer to beginning of each
country

For each country:
While (pointer not at end of country) {

While(item pointed to is not in
correct country) {

Swap item to location pointed to
in target country

Increment target country pointer

}

Increment current country pointer

Serial In-place Radix Sort

Initialize pointer to beginning of each
country

For each country:

While (pointer not at end of country) {

While(item pointed to is not in
correct country) {

Swap item to location pointed to
in target country

Increment target country pointer 1 1 1

}

Increment current country pointer

Serial In-place Radix Sort

Initialize pointer to beginning of each
country

For each country:

While (pointer not at end of country) {

While(item pointed to is not in

correct country) {

Swap item to location pointed to
in target country Swap!

Increment target country pointer

}

Increment current country pointer

]
[ololoft[a2f [Jal]

7

Serial In-place Radix Sort

Initialize pointer to beginning of each
country

For each country:
While (pointer not at end of country) {

While(item pointed to is not in
correct country) {

R |

Swap item to location pointed to

Swap!

in target country

Increment target country pointer

}

Increment current country pointer

h
h
h
h

8

Serial In-place Radix Sort

Initialize pointer to beginning of each
country

For each country:
While (pointer not at end of country) {

While(item pointed to is not in
correct country) {

Swap item to location pointed to
in target country

Increment target country pointer l 1 1 1

}

Increment current country pointer

Serial In-place Radix Sort

Initialize pointer to beginning of each
country

For each country:

While (pointer not at end of country) {

While(item pointed to is not in
correct country) {

Swap item to location pointed to Swap!
in target country

Increment target country pointer l 1 1 1

}

Increment current country pointer

Why parallel in-place is hard?!

Ermallnn A5 00050

21

Why parallel in-place is hard?!

Related
Work

PARADIS [Cho et. al 2015]

e Parallel in-place radix sort.
e Worst case span is O(n).

IPS40 [Axtmann et. al 2017]

e Parallel in-place comparison based
sort.
e Work is O(nlog(n)).

24

A parallel in-place algorithm for radix sort

For some parameter K:

a. Work: O(n)
b. Span: O(log(K) + n/K)
c. Space: O(K)

(assuming fixed length integers)

Our Algorithm: Regions Sort

Regions Sort
Overview

1. Local Sorting
O Partially sort the input.

2. Regions Graph Building

o Represent dependences in
partially sorted array with
small amount of memory.

3. Global Sorting

o Use regions graph to
completely sort the input.

27

Local
Sorting

Key ldea:

Divide array into K Blocks and
sort each block independently.

Block: sub-array of
size n/K.

28

Local
Sorting

Sort using serial in-place radix sort

29

Regions
Graph
Building

Key ldea: Represent
dependences in partially
sorted array with small

amount of memory.

30

Regions Graph Building

Homogeneous
sub-array: A
subarray with the
same digit

1 00 T
[elolol I T]
U

/

Regions Graph Building

Region: A

country.

homogeneous sub-
array within same

[1 [

U ud

|

n

]

—o

Regions Graph Building

n

U

|

]

n

Create edge of
weight W from
country x to country y
if a region of W
elements wants to go
from country x to
country y

33

Regions Graph Building

[] ﬂﬂl_l-ﬂ\
LPAR AR
J Uy U

/

No self-edges

Global
Sorting

Key ldea: Use regions graph
to move regions to their target

countries iteratively and
updating the graph.

Two Approaches:

1. Cycle Finding
2. 2-Path Finding

35

A 2-path consists of two edges:

Global
Sorting

e |ncoming edge to node x
corresponding to a region that can
be moved into country x.

e Outgoing edge from node x
corresponding to a region that is
in country x and needs to be

moved out of country x.
1

) S

36

Global Sorting: 2-Path Finding

2-path Finding

Global Sorting: 2-Path Finding

2-path Finding

1. Choose a vertex.

Global Sorting: 2-Path Finding

2-path Finding

1. Choose a vertex.
2. Match incoming edges
with outgoing edges.

39

Global Sorting: 2-Path Finding

2-path Finding

1. Choose a vertex.
2. Match incoming edges
with outgoing edges.

-

40

Global Sorting: 2-Path Finding

2-path Finding

-

1. Choose a vertex.

2. Match incoming edges
with outgoing edges.

3. Execute swaps.

Global Sort: 2-Path Finding

2-path Finding

1. Choose a vertex.

2. Match incoming edges
with outgoing edges.
Execute swaps.

4. Edit edges.

ce

Global Sorting: 2-Path Finding

2-path Finding

1. Choose a vertex.

2. Match incoming edges
with outgoing edges.
Execute swaps.

4. Edit edges.

ce

Global Sorting: 2-Path Finding

2-path Finding

1. Choose a vertex.

2. Match incoming edges
with outgoing edges.

3. Execute swaps.

4. Edit edges.

44

Global Sorting: 2-Path Finding

2-path Finding

1. Choose a vertex.

2. Match incoming edges
with outgoing edges.

3. Execute swaps.

4. Edit edges.

45

Global Sorting: 2-Path Finding

2-path Finding

1. Choose a vertex.

2. Match incoming edges
with outgoing edges.

3. Execute swaps.

4. Edit edges.

Global Sorting: 2-Path Finding

2-path Finding

1. Choose a vertex.

2. Match incoming edges
with outgoing edges.
Execute swaps.

4. Edit edges.

ce

Analysis

48

1. Local Sorting

a. Work: O(n)
b. Span: O(log(K) + n/K)
c. Space = O(KB)

e Kis number of blocks
e B is number of buckets per block

2. Build Regions Graph

a. Work = O(KB)
b. Span = O(log(KB))
c. Space = O(KB)

e Since #edges < #regions < KB
e Kis number of blocks
e B is number of buckets per block

3. Global Sorting

a. Work = O(n)
b. Span = O(B (log(KB) + B))
c. Space = O(KB)

e O(n) swaps
e #nodes removed = O(B)
e #edges at each node removed is O(KB)

Total for one level of recursion
Work = O(n)

Span = 0(n/K + B (log(KB) + B))
Space = O(KB)

Recursion

Recursion

Each country is recursed on independently.

Each country divided into number of blocks proportional to
Its size.

Integers with range r need at most logg(r) recursion levels to
be fully sorted.

For problem sizes smaller than B, we use comparison sort.

54

Algorithm: Recursion

Total on all levels

a. Work = O(n log(r))
b. Span = O((log(K) + n/K) log(r))
c. Space = O(P log(r) + K)

e Assuming B =0(1)

Algorithm: Recursion

Total on all levels
a. Work = O(n)

b. Span = O((log(K) + n/K))
c. Space = O(P + K)

e Assuming B = 0(1)

e Assumingr = 0(1) (fixed length integers)

Alternative Approach: Cycle Finding

e Find Cycle in Regions Graph

e Execute Cycle to move elements

e Remove edge with min weight, and
decrease weight of all other edges by
this weight

e Repeat until all edges are deleted

Evaluation

58

Evaluation: Control Algorithms

State-of-the-art parallel sorting algorithms:

e __gnu_parallel::sort (MCSTL, included in gcc) [Singler et. al 2007]
o Not fully in-place; uses parallel mergesort

RADULS (parallel out-of-place radix sort) [Kokot et al. 2017]

PBBS parallel out-of-place radix sort [Shun et. al 2012]

PBBS parallel out-of-place sample sort [Shun et. al 2012]

Ska Sort (serial in-place radix sort)

IPS40 (parallel in-place sample sort) [Axtmann et al. 2017]

PARADIS (parallel in-place radix sort) not publicly available

Input distribution:

e Uniform
e Skewed
e Equal, and almost sorted

59

Evaluation: Our Algorithms

Our Algorithms

Cycle finding
K=P
B =256

2-path finding
K =5000
B =256

60

Evaluation: Test Environment

AWS c5.9xlarge
Intel Xeon Platinum 8000 series

72 vCPU (36 cores with hyperthreading)
144 GB RAM

All code compiled with g++-7 with Cilk Plus

61

Comparison with other algorithms

Regions Sort performance on various inputs with 1 billion
Integers:

e Between 1.1-3.6x faster than IPS4o0, the fastest parallel
sample sort, except on one input (1.02x slower).

e Between 1.2-4.4x faster than the fastest out-of-place
Radix Sort (PBBS).

e 1.3x slower to 9.4x faster than RADULS.

e About 2x faster than PARADIS based on their reported
numbers on same number of cores 62

Speedup over serial 2-path: 1 billion random integers

404 —®— 2-path
—&— Cycle
35 —i— [PS4o
= —#— MCSTL
lav
2. 30 RADULS
AN —#— PBBS radix sort —0
:?,_6. 25 - —4— PBBS samplesort
z —%
< 20
3
=115 - 1
)
9
10 ~
|
0 10 20 30 40 50 60 70
Threads .

Distribution independence: 1 billion integers from Zipf

5000 1 —&— 2-path
—&— Cycle
—— IPS4o
4000 4 —#— MCSTL
RADULS
—#— PBBS radix sort
’g 3000 - —4— PBBS samplesort
)
=
) 0 r \
1000 - &
0 +— - ; .
0.25 0.50 0.75 1.00
Theta o

Regions Sort: fastest across all input sizes (Random)

—&— 2-path
2500 1| —a— Cycle
—i— [PS4o
—#— MCSTL
2000 - RADULS
—#— PBBS radix sort
—~ —4— PBBS samplesort
E 1500 4
O
£
=
1000 -
500 -
K
} — =
0 . : . .
0.2 0.4 0.6 0.8 1.0
Length x 107 N

Input Range - Uniform Sequence (1 billion integers)

4000
—&— 2-path
3500 - —&— Cycle
—— [PS4o
—— MCSTL
3000 1 RADULS
—#— PBBS radix sort
— 2500 + —4— PBBS samplesort
g
2 2000 -
=
= 1500 -
1000 -
500 -

102100 100 10° 106 107 108 10°

Range 66

Our contributions:

Conclusion e Regions Sort: the first parallel in-
place radix sort with strong
theoretical guarantees.

e Empirical evidence showing high
scalability and distribution
independence.

e Almost always faster than state-

of-the-art parallel sorting
algorithms in our experiments.

68

