Making Caches Work for
Graph Analytics

Yunming Zhang, Vladimir Kiriansky, Charith Mendis, Saman
Amarasinghe, Matei Zaharia

Reviewed by Miranda Cai

Graph Frameworks Are Limited

Current graph frameworks do not reach full hardware potential
Some frameworks store on disk

o High overhead
Others store in memory

o Every access is a random access to DRAM
o Not cache optimized

60-80% of cycles are stalled on memory access

Cagra

Idea: A graph framework that fully utilizes the cache to eliminate all DRAM
random accesses and make all DRAM accesses sequential.

Main Contributions:

e CSR Segmenting
o Partitioning system
e (Cagra Framework
o Ex: PageRank application

e Performance Benefits

Preprocessing using CSR Segmenting

Algorithm 2 Preprocessing

Input: Number of vertices per segment N, Graph G
for v : G.vertices do
for inEdge : G.inEdges(v) do
segmentID <« inEdge.src/N
subgraphs[segmentI D|.addInEdge(v,inEdge.src)
end for
end for
for subgraph : subgraphs do
subgraph.sort By Destination|()
subgraph.constructldxzMap()
subgraph.construct BlockIndices()
subgraph.constructIntermBuf()
end for

Preprocessing using CSR Segmenting

Algorithm 2 Preprocessing

Input: Number of vertices per segment N, Graph G
for v : G.vertices do
for inEdge : G.inEdges(v) do
segmentID <« inEdge.src/N
subgraphs[segmentI D|.addInEdge(v,inEdge.src)
end for
end for
for subgraph : subgraphs do
subgraph.sort By Destination|()
subgraph.constructldxzMap()
subgraph.construct BlockIndices()
subgraph.constructIntermBuf()
end for

N

3

Segment 0

0

1

2

Segment 1

3

4

5

Preprocessing using CSR Segmenting

Algorithm 2 Preprocessing

Input: Number of vertices per segment N, Graph G
for v : G.vertices do
for inEdge : G.inEdges(v) do
segmentID <« inEdge.src/N
subgraphs[segmentI D|.addInEdge(v,inEdge.src)
end for
end for
for subgraph : subgraphs do
subgraph.sort By Destination()
subgraph.constructldxzMap()
subgraph.construct BlockIndices()
subgraph.constructIntermBuf()
end for

3

Segment 0

0

1

2

Segment 1

3

4

5

Preprocessing using CSR Segmenting

Algorithm 2 Preprocessing

=

Input: Number of vertices per segment N, Graph G
for v : G.vertices do
for inEdge : G.inEdges(v) do
segmentID <« inEdge.src/N
subgraphs[segmentI D|.addInEdge(v,inEdge.src)
end for
end for
for subgraph : subgraphs do
subgraph.sort By Destination()
subgraph.constructIdzMap()
subgraph.construct BlockIndices()
subgraph.constructIntermBuf ()
end for

N

3

Segment 0

0

1

2

Segment 1

3

4

5

Preprocessing using CSR Segmenting

Algorithm 2 Preprocessing Segment 0 Segment 1
Input: Number of vertices per segment N, Graph G _
for v : G.vertices do N=3 0 1 2 3 4 5

for inEdge : G.inEdges(v) do
|::> segmentI D < inEdge.src/N
subgraphs[segmentI D|.addInEdge(v,inEdge.src)

end for

end for

for subgraph : subgraphs do
subgraph.sort By Destination()
subgraph.constructIdzMap()
subgraph.construct BlockIndices()
subgraph.constructIntermBuf ()

end for

segmentlD=0 segmentID=0 segment|D=1

Preprocessing using CSR Segmenting

Algorithm 2 Preprocessing Segment 0 Segment 1

Input: Number of vertices per segment N, Graph G _

for v : G.vertices do N=3 0 1 2 3 4 5
for inEdge : G.inEdges(v) do

segmentI D < inEdge.src/N L
|::> subgraphs[segmentI D|.addInEdge(v,inEdge.src)

end for 5 S

end for

for subgraph : subgraphs do
subgraph.sort By Destination()
subgraph.constructIdzMap()
subgraph.construct BlockIndices()
subgraph.constructIntermBuf ()
end for

segmentlD=0 segmentID=0 segment|D=1

Preprocessing using CSR Segmenting

Algorithm 2 Preprocessing

Input: Number of vertices per segment N, Graph G
for v : G.vertices do
for inEdge : G.inEdges(v) do
segmentID <« inEdge.src/N
subgraphs[segmentI D|.addInEdge(v,inEdge.src)
end for

end for
|::> for subgraph : subgraphs do
subgraph.sort By Destination()

subgraph.constructldxzMap()

subgraph.construct BlockIndices()

subgraph.constructIntermBuf()
end for

N

3

Segment 0

0

1

2

Segment 1

>R

3

4

5

CSR Segmenting Cache Benefits

Without segmenting, need to load all source vertices

source vertices W/

destination vertices
v

With segmenting, load segments that fit into a cache

Processing segment 1:
segment 1
source vertices

destination vertices -
v

Processing segment 2:
. segment 2
source vertices ' * !

destination vertices
v2

Processing Segments in Parallel

Algorithm 3 Parallel Segment Processing

for subgraph : subgraphs do
parallel for v : subgraph.Vertices do
for inEdge : subgraph.inEdges(v) do
Process inFdge
end for
end parallel for
end for

Process in segments since each segment fits in cache. Then every vertex within
the same segment share the same working set.

Return: Fills up subgraph.interimBuf with processed edges.

Merge Interim Buffers into Final Output

Algorithm 4 Cache-Aware Merge

Interim Buffers

parallel for block : blocks do
for subgraph : G.subgraphs do
blockStart < subgraph.blockStarts[block]

Segment 0

block End <+ subgraph.block Ends[block] 0
intermBuf < subgraph.intermBuf

1

5

Segment 1

for localldz from blockStart to block End do
globalldx <+ subgraph.idzM apllocalldz]

0

3

4 |5

localUpdate = intermBu f[localldx)]
merge(output[globalldz], localU pdate)
end for
end for
end parallel for
return output

Blocks are
L1- cache sized

Output

Segment Size Selection

Trade-off when choosing segment size
o Smaller segments — Lower random access latency, More interim buffer merges
o Larger segments — Higher random access latency, Less interim buffer merges

Experiments show L3 cache (LLC) is the best
Expansion factor metric

q=sadj/s

where s = no. of vertices per segment, 8,4 — Avg no. of edges to segment

q describes avg no. of segments that contribute data to each vertex, which is
same as the no. of merges per vertex

Memory Access Costs Analysis

k segments
q expansion factor
V/k no. source vertices per segment

qV/k no. interim buffer updates per segment

V/k
qV/k

Memory Access Costs Analysis

segments
expansion factor
no. source vertices per segment
no. interim buffer updates per segment
Phase 1 Traffic. E + V +qV
Phase 2 Traffic: V+qV

V/k
qV/k

Memory Access Costs Analysis

segments
expansion factor
no. source vertices per segment
no. interim buffer updates per segment
Phase 1 Traffic: E+ V +qV
Phase 2 Traffic: V+qV
Total Traffic: £ + 2qV + 2V

Frequency Based Clustering

Before CSR segmenting, reorder the vertices such that high degree vertices
are clustered together
Only vertices with degree > avg degree get clustered
Most of the original locality is preserved
The advantages:
o Most graphs follow power-law degree distribution
o Better cache-line utilization

o Keep frequently accessed vertices
in fast cache

¥ Twitter random Twitter original # Twitter clustered

- N
wn O

Expansion
Factor
=

S W

1 10 100 1000

Number of Segments

PageRank Algorithm

Algorithm 5 PageRank in Cagra

typedef double vertexDataType
contrib < {1/outDegree[v], ...}
newRank < {0.0, ...}

procedure EDGEUPDATE(bu fV al, srcVal, dstV al)
bufVal+ = srcVal
return true

end procedure

procedure MERGE(newDstVal,bufV al)
newDstVal+ = bufVal
end procedure

procedure VERTEXUPDATE(v)
newRank[v] < 0.15 + 0.85 * new Rank[v]
newRank[v] < newRank[v]/out Degree[v]
contribv] < 0.0
return true

end procedure

procedure PAGERANK(G, maxIter)
iter < 0
A+V
while iter # maxIter do
A + EdgeMap(G, A, EdgeUpdate, EdgeM erge)
A + VertexMap(G, A, VertexUpdate)
Swap(contrib, new Rank)
iter < iter 4+ 1
end while
end procedure

Example of easy to implement algorithm using Cagra Interface, some ideas

borrowed from Ligra.

Evaluation

Dataset | Cagra HandOpt | GraphMat | Ligra GridGraph Dataset Cagra | HandOpt C++ Ligra
C++ Live Journal | 0.02s (1x) | 0.01s (0.68x) | 0.03s (1.51x)
Live 0.017s 0.031s 0.028s 0.076s 0.195 Twitter 0.27s (1x) | 0.51s (1.73x) | 1.16s (3.57 %)
Journal | (1.00x) (1.79x) | (1.66x) (445x) | (11.5x%) RMAT 25 0.14s (1x) | 0.33s (2.20%) 0.5s (3.33%)
Twitter | 0.29s 0.79s 1.20s 2.57s 2.58 RMAT 27 0.52s (Ix) | 1.17s (2.25%) | 2.90s (5.58 %)
(1.00x) | (2.72%x) | (4.13x) | (8.86x) | (8.90x) SD 034 (Ix) | 1.05 (3.09%) | 228 (6.71x)
RMAT 0.15s 0.33s 0.5s 1.28s 1.65
25 (1.00x) (2.20x) | (3.33%) (8.53%) | (11.0x) TABLE IV: Label Propagation runtime per iteration comparisons with
RMAT | 0.58s 1.63s 2.50s 4.96s 6.5 other frameworks and slowdown relative to Cagra
27 (1.00x) | (2.80x) | (4.30x%) | (8:53x) | (11.20x) Daae Cagra T
SD 0.43 1.33 2.23 3.48 3.9 LiveJournal 12s (Ix) | 1.2s (1.00X)
TABLE II: PageRank runtime per iteration comparisons with other Eﬁ:$ %g ;1032 8 ;3 }ééz Eiggi;
frameworks and slowdown relative to Cagra D 5.0 | 197 (131%)
Dataset Cagra | HandOpt C++ GraphMat
Netflix 0.20s (I1x) | 0.32s (1.56x) 0.5s (2.50%) TABLE V: Between Centrality runtime for 12 different starting points
Netflix2x | 0.81s (1x) | 1.63s (2.01x) | 2.16s (2.67X) comparisons with Ligra and slowdown relative to Cagra
Netflixdx | 1.61s (1x) | 3.78s (2.80%) Ts (4.35%)

TABLE III: Collaborative Filtering runtime per iteration comparisons
with GraphMat and slowdown relative to Cagra

Cagra shows up to 5x speed up against the most competitive existing frameworks,
and performs better on larger graphs.

Evaluation

B Hand Optimized C++ M Clustering ™ Segmenting M Clustering + Segmenting

ol e it] it o

LiveJournal Twitter RMAT25 RMAT27 LiveJournal Twitter RMAT25 RMAT27 Netflix Netflix2x Netflix4x
(a) PageRank (b) Label Propagation (c) Collaborative Filtering

- N W

Speeodup over Baseline

Fig. 7: Speedups of optimizations on PageRank, Label Propagation, Collaborative Filtering
B Hand Optimized C++ M Clustering W Segmenting W Clustering + Segmenting

5 $10 € g 08
2w 75 55 06
7 > 50 3 aé 04
= -
25 02
{5 e
veJourn; witter veJourn; witter
o LiveJ al RMAT25 Twi SD RMAT27 LiveJ al RMAT25 Twi SD RMAT27
S o (a) Cycles stalled on memory per edge - PageRank (b) Time per edge - PageRank
sgm £ g 08
2 0525 g So4s
- = 1
> 35 u g 03
8 s 3 8015
(%é 0 £ g o
veJourn: witter veJourn: witter
LiveJ al RMAT25 Twi SD RMAT27 LiveJ al RMAT25 Twil SD RMAT27
(a) Cycles stalled on memory per edge - Label Propagation (b) Time per edge - Label Propagation

Fig. 8: Cycles stalled on memory and time per edge for PageRank and Label Propagation. Cycles stalled per edge for Clustering + Segmenting
is low and stable across graphs with increasing sizes, demonstrating that random accesses are confined in LLC.

Segmenting on its own already provides 2x speedup. Cycles stalled on memory
per edge increases for graph size on Hand Optimized C++, but stays consistent
for Cagra with segmenting.

Evaluation

10
; = 9 « HMerge * HAtomic & HSerial 16 !
§ . ® Cagra #® GridGraph ® Cagra # GridGraph # HMerge
£
@ 7
3¢ ©
- O
[
35 4
g 3
g o
& 1

0

1 2 4 8 12
Cores Cores

Cagra is much more scalable than other cache optimized frameworks like
GridGraph and Hilbert ordering ones.

Evaluation

Dataset Clustering | Segmenting| Build
CSR
LiveJournal | 0.1 s 02s 048 s
Twitter 0.5 38s 12.7 s
RMAT 27 14s 6.3 s 39.3's
TABLE VI: Preprocessing Runtime in Seconds.
Frameworks Cagra GridGraph X-Stream
Partitioned 1D- 2D Grid Streaming
Graph segmented Partitions
CSR
Sequential E + (2q+1)V E + (P+2)V | 3E + KV
DRAM traffic
Random 0 0 shuffle(E)
DRAM traffic
Parallelism within ID- | within 2D- | across many
segmented partitioned streaming
subgraph subgraph partitions
Runtime Cache-aware E*atomics shuffle and
Overhead merge gather phase

TABLE VII: Comparisons with other frameworks optimized for
cache. E is the number of edges, V is the number of vertices, ¢ is
the expansion factor for our techniques, P is the number of partitions
for GridGraph, K is the expansion factor for X-Stream. On Twitter
graph, £ = 36V, q = 2.3, P = 32.

Preprocessing time is insignificant. GridGraph'’s preprocessing time was up to
9-11x slower than Cagra’s.

Comparison to Existing Models

GridGraph, X-Stream
o Use 2D partitioning into subgraphs
o Some subgraphs can be small — bad scalability
o High overhead run-times
Disk-based systems (GraphChi)
o Slow compared to cache optimizations
Distributed Systems

Hilbert Ordering

o Edge traversal method
o Cache contention — bad scalability

Conclusion

Strengths

e Novel Approach and optimizations that meshed well together
e \ery in depth evaluation

Weaknesses
e Only algorithms with certain features were used for comparison
Future Directions

e Introducing more parallelism
e Minimizing preprocessing time

