
Making Caches Work for 
Graph Analytics

Yunming Zhang, Vladimir Kiriansky, Charith Mendis, Saman 
Amarasinghe, Matei Zaharia

Reviewed by Miranda Cai



Graph Frameworks Are Limited

● Current graph frameworks do not reach full hardware potential
● Some frameworks store on disk

○ High overhead
● Others store in memory

○ Every access is a random access to DRAM
○ Not cache optimized

● 60-80% of cycles are stalled on memory access



Cagra

Idea: A graph framework that fully utilizes the cache to eliminate all DRAM 
random accesses and make all DRAM accesses sequential.

Main Contributions:

● CSR Segmenting
○ Partitioning system

● Cagra Framework
○ Ex: PageRank application

● Performance Benefits



Preprocessing using CSR Segmenting

0 5

41

2 3



Preprocessing using CSR Segmenting

0 5

41

2 3

0 1 2 3 4 5

Segment 0 Segment 1

N=3



Preprocessing using CSR Segmenting

0 5

41

2 3

0 1 2 3 4 5N=3

5

Segment 0 Segment 1



Preprocessing using CSR Segmenting

0 5

41

2 3

0 1 2 3 4 5N=3

5

41

2

Segment 0 Segment 1



Preprocessing using CSR Segmenting

0 5

41

2 3

0 1 2 3 4 5N=3

5

41

2

segmentID=0 segmentID=0 segmentID=1

Segment 0 Segment 1



Preprocessing using CSR Segmenting

0 5

41

2 3

0 1 2 3 4 5N=3

5

41

2

segmentID=0 segmentID=0 segmentID=1

55

Segment 0 Segment 1



Preprocessing using CSR Segmenting

0 5

41

2 3

0 1 2 3 4 5N=3

310 5 0 4 5

Segment 0 Segment 1



CSR Segmenting Cache Benefits
Without segmenting, need to load all source vertices

With segmenting, load segments that fit into a cache



Processing Segments in Parallel

Process in segments since each segment fits in cache. Then every vertex within 
the same segment share the same working set.

Return: Fills up subgraph.interimBuf with processed edges.



Merge Interim Buffers into Final Output

310 5 0 4 5

Segment 0 Segment 1

21 3 4 5

Interim Buffers

Output

Blocks are 
L1- cache sized



Segment Size Selection

● Trade-off when choosing segment size
○ Smaller segments → Lower random access latency, More interim buffer merges
○ Larger segments → Higher random access latency, Less interim buffer merges

● Experiments show L3 cache (LLC) is the best
● Expansion factor metric

q = sadj / s

where s = no. of vertices per segment, sadj = avg no. of edges to segment

q describes avg no. of segments that contribute data to each vertex, which is 
same as the no. of merges per vertex



Memory Access Costs Analysis

k segments

q expansion factor

V/k no. source vertices per segment

qV/k no. interim buffer updates per segment



Memory Access Costs Analysis

k segments

q expansion factor

V/k no. source vertices per segment

qV/k no. interim buffer updates per segment

Phase 1 Traffic: E + V + qV

Phase 2 Traffic: V + qV



Memory Access Costs Analysis

k segments

q expansion factor

V/k no. source vertices per segment

qV/k no. interim buffer updates per segment

Phase 1 Traffic: E + V + qV

Phase 2 Traffic: V + qV

Total Traffic: E + 2qV + 2V



Frequency Based Clustering

● Before CSR segmenting, reorder the vertices such that high degree vertices 
are clustered together

● Only vertices with degree > avg degree get clustered
● Most of the original locality is preserved
● The advantages:

○ Most graphs follow power-law degree distribution
○ Better cache-line utilization
○ Keep frequently accessed vertices 

in fast cache



PageRank Algorithm

Example of easy to implement algorithm using Cagra Interface, some ideas 
borrowed from Ligra.



Evaluation

Cagra shows up to 5x speed up against the most competitive existing frameworks, 
and performs better on larger graphs.



Evaluation

Segmenting on its own already provides 2x speedup. Cycles stalled on memory 
per edge increases for graph size on Hand Optimized C++, but stays consistent 
for Cagra with segmenting.



Evaluation

Cagra is much more scalable than other cache optimized frameworks like 
GridGraph and Hilbert ordering ones.



Evaluation

Preprocessing time is insignificant. GridGraph’s preprocessing time was up to 
9-11x slower than Cagra’s.



Comparison to Existing Models

● GridGraph, X-Stream
○ Use 2D partitioning into subgraphs
○ Some subgraphs can be small → bad scalability
○ High overhead run-times

● Disk-based systems (GraphChi)
○ Slow compared to cache optimizations

● Distributed Systems
● Hilbert Ordering

○ Edge traversal method
○ Cache contention → bad scalability



Conclusion

Strengths

● Novel Approach and optimizations that meshed well together
● Very in depth evaluation

Weaknesses

● Only algorithms with certain features were used for comparison

Future Directions

● Introducing more parallelism
● Minimizing preprocessing time


