A Framework for Processing Large
Graphs in Shared Memory

Julian Shun

Based on joint work with Guy Blelloch and Laxman Dhulipala

What are graphs? aae

Vertex Vertex

[Lirary o Comgrss Counry

(Hows SKGlF Works) g Findar,

e Caalogq By coms Sk |
> Elament o Style (1918)

\
< Weather Chammel!” " The Onlns Books Page
g L 2

wabrs

(Tl Paper Honsy INDEX)
Singapore Travel and Horel
Gude

(e Tevva-siory
Pt

*Kontaktlinsea 1 TP/
nformationen 20 Kegars 39

[1soportal)
(Klingeleifae) Fress6 (The GIMD)

Graph Data is Everywhere!

- Can contain up to billions of vertices and edges

- Need simple, efficient, and scalable ways to
analyze them

Efficient Graph Processing

Use parallelism

Design efficient algorithms

Breadth-first search Single-source shortest paths
Betweenness centrality Eccentricity estimation
Connected components (Personalized) PageRank

Write/optimize code for each application
Build a general framework

Ligra Graph Processing Framework

EdgeMap VertexMap

Breadth-first search Single-source shortest paths
Betweenness centrality Eccentricity estimation
Connected components (Personalized) PageRank
Triangle counting Local graph clustering
K-core decomposition Biconnected components
Maximal independent set Collaborative filtering

Set cover

Simplicity, Performance, Scalability

. R
Graph Processing Systems

- Existing: Pregel/Giraph/GPS, GraphLab, Pegasus,
Knowledge Discovery Toolbox, GraphChi, etc.

- Our system: Ligra - Lightweight graph processing
system for shared memory

Takes advantage of “frontier-based”
nature of many algorithms
(active set is dynamic and often small)

Breadth-first Search (BFS)

- Compute a BFS tree rooted at source r containing
all vertices reachable from r

Applications

Eccentricity estimation

Web crawlers

Cycle detection

L. T
o

- Can process each frontier in parallel
- Race conditions, load balancing

7

Steps for Graph Traversal wany g

sal
algorithms do‘gﬂli
- Operate on a subset of vertices VertexSubset

- Map computation over subset of edges in parallel }
- Return new subset of vertices

- Map computation over subset of vertices in parallel \ertexiiap

We built the Ligra abstraction for
these kinds of computations

EdgeMap

Think with flat data-parallel operators

Abstraction enables optimizations
(hybrid traversal and graph compression)

Breadth-first Search in Ligra

parents = {-1, ..., -1}; //-1 indicates “unexplored”

procedure UPDATE(s, d):
return compare_and_swap(parents[d], -1, s);

procedure COND(v):
return parents|v] == -1; //checks if “unexplored”
procedure BFS(G, r): frontier

parents[r] = r;

frontier = {r}; //VertexSubset ¢ o &

while (size(frontier) > 0): T T F T T
frontier = EDGEMAP(G, frontier, UPDATE, COND);

Actual BFS code in Ligra

!\Sparsg)oRQe_nge/Edgel\/lap?

~Frontier

 Dense method better when
frontier is large and many
vertices have been visited

« Sparse (traditional) method
better for small frontiers

 Switch between the two
methods based on frontier
size [Beamer et al. SC '12]

Limited to BFS?

. B
EdgeMap

procedure EDGEMAP(G, frontier, Update, Cond):
if (size(frontier) + sum of out-degrees > threshold) then:
return EDGEMAP_DENSE(G, frontier, Update, Cond);
else:
return EDGEMAP_SPARSE(G, frontier, Update, Cond);

" 4

Loop through incoming edges of
“‘unexplored” vertices (in parallel),
breaking early if possible

* More general than just BFS!

* Generalized to many other problems

* For example, betweenness centrality, connected components,
sparse PageRank, shortest paths, eccentricity estimation,
graph clustering, k-core decomposition, set cover, etc.

» Users need not worry about this

Loop through outgoing edges
of frontier vertices in parallel

Frontier-based approach enables
hybrid traversal

Twitter graph (41M vertices, 1.5B edges)

- a
o N b

40-core running time (seconds)
o N BEN o oo

30.7

20.7

BFS

Betweenness
Centrality

Connected
Components

Eccentricity
Estimation

m Dense

m Sparse

m Hybrid
(switching
between sparse
and dense using

default threshold
of |E|/20)

PageRank

VertexMap

VertexSubset

bool f(v){
data[v] = data[v] + 1;
return (data[v] == 1);

}

VertexSubset

N
PageRank in Ligra

p_curr ={1/|V|, ..., 1/|V|}; p_next =10, ..., O}; diff = {}; error =;

procedure UPDATE(s, d):
atomic_increment(p_next[d], p_curr[s] / degree(s));
return 1;

procedure COMPUTE(i):
p_next[i] = a - p_next[i] + (1- a) - (1/|V|]);
diff[i] = abs(p_next[i] — p_curr]i]);
p_curr[i] = 0;
return 1;

procedure PageRank(G, aq, €):

frontier = {0, ..., |V|-1};

error = sum of diff entries;

swap(p_curr, p_next)
return p_curr,;

I
PageRank

- Sparse version?

- PageRank-Delta: Only update vertices whose PageRank
value has changed by more than some A-fraction
(discussed in PowerGraph and McSherry WWW ‘05)

PageRank-Delta in Ligra

PR[i] = {1/|V|, ..., 1/|V|};
nghSum = {0, ..., O};
Change = {}; //store changes in PageRank values

procedure UPDATE(s, d): //passed to EdgeMap
atomic_increment(nghSum[d], Change[s] / degree(s));
return 1;

procedure COMPUTE(i): //passed to VertexMap
Changeli] = a - nghSum[i];
PR[i] = PR]i] + Change]i];
return (abs(Changeli]) > A); //check if absolute value of change is big enough

Performance of Ligra

N
Ligra BFS Performance

Twitter graph (41M vertices, 1.5B edges)

04 180
' 160
§O.25 : 140
()]
§ 0.2 - Ligra (40-core Q 120
. (&]
) machine) « 100
20.15 - 2 80
£ :
o 0.1 5 60
= m Hand-written 40
S0.05 - Cilk/OpenMP (40-core 20 |
e machine)
0
0 . i
BFS BFS

- Comparing against hybrid traversal BFS code by Beamer et al.

N
Ligra PageRank Performance

Twitter graph (41M vertices, 1.5B edges)

14 m PowerGraph (64 x 8- 80
w12 - cores) 70
=
§10 . = PowerGraph (40-core @ 60 1
% g machine) 990 -

540 -
:g 6 - m Ligra (40-core g
> 1 machine) g 30 -
N =20 -
S o m Hand-written
i Cilk/OpenMP (40-core 10 -
0 - machine) 0 -
Page Rank (1 iteration) Page Rank

- Easy to implement “sparse” version of PageRank in Ligra

Connected Components Performance

Twitter graph (41M vertices, 1.5B edges)

Largest publicly— 00 -
w 1 [.]
o
_d§, .Y 72-core machine with 1TB RAM Ligra Running time
© BFS
g 1
= Connected components 42s
e 0-5 1 iteration PageRank

0 - ore 1t 0
Connected Components Connected Components

- Ligra’s performance is close to hand-written code
- Faster than best existing system

- Subsequent systems have used Ligra’s abstraction and hybrid

traversal idea, e.g., Galois [SOSP "13], Polymer [PPoPP "15],
Gunrock [PPoPP "16], Gemini [OSDI "16], GraphGrind [ICS “17],

Grazelle [PPoPP ‘18]

- 2z
Large Graphs

Amazon EC2

x1exlarge
x1e.2xlarge
xT1e.4xlarge
x1e.8xlarge
x1e.16xlarge

x1e.32xlarge

vCPU ECU [Memory (GiB)\
4 12 122
8 23 244
16 47 488
32 91 976
64 179 1952
128 340 3904 y
—

Instance Storage (GB) Linux/UNIX Usage
1x120SSD $0.834 per Hour
1x240SSD $1.668 per Hour
1x 480 SSD $3.336 per Hour

1x 960 $6.672 per Hour
1x 1920 SSD $13.344 per Hour
2x 1920 SSD $26.688 per Hour

* Most can fit on commodity shared memory machine

i

I
I
I
I

N i o B fe

HHHHHH

Example
Dell PowerEdge R930:

Up to 96 cores and 6 TB of RAM

B
What if you don't have or can't afford that

much memory?

Running Time

Memory Required

Graph Compression

Ligra+: Adding Graph
Compression to Ligra

.
Ligra+: Adding Graph Compression to Ligra

[Interface \

(\/G\raph < Use compressed representa’tan,\
VertexS?bs;t < —Same as before B
EdgeMap < Decode edges on-the-fly
\ VertexMap Same as before

- Same interface as Ligra
- All changes hidden from the user!

¥
Graph representation

g]
Vertex IDs | 0 » 1 \24y 3
Offsets 0 4 5 11

O‘\ O‘\ o™
Edges | 12,7, 9 16 0 ‘1. 6 9 12
- - -
2-0=27-2=5 1-2=-1
Compressed
Edges 2 5 2 7 -1 -1 5 3 3

Sort edges and encode differences

7
Variable-length codes

- k-bit codes

- Encode value in chunks of k bits
- Use k-1 bits for data, and 1 bit as the “continue” bit

- Example: encode “401” using 8-bit (byte) code

-In binary: ERERRIRIERCICIEDER
\—

Nﬂs for data

1010110001 0000011
P

“continue” bit

- ®
Encoding optimization

- Another idea: get rid of “continue” bits

X4 X2 X3 X4 X5 Xe X7 Xg | "=""*"

Number of bytes
required to encode
each integer

1 2 2 2 2 2 2 2

Use run-length encoding

Header
ol1lol11]ofof1]] | .
T \ Integers in group
encoded in byte chunks
Number of bytes Size of group
per integer (max 64)

* Increases space, but makes decoding cheaper (no branch
misprediction from checking “continue” bit)

. B’
Ligra+: Adding Graph Compression to Ligra

[Interface \

=
'\

- Same interface as Ligra

(\ (iaph < Use compressed representa’tio_n,\
VertexSubset < - Same as before
—_—— — T~ -
C EigeMap < Decode edges on-thiﬂy’ D
_ VertexMap 4 — Same as before

- All changes hidden from the user!

-~

VertexSubset

~

@/

@
()

/

\

Modifying EdgeMap

- Processes outgoing edges of a subset of vertices

OANg

2 |5 | 2 7,9 2 1|3 3
4 | 6 3|1 |3 5|6 | 2
5 10 | 2

All vertices processed
30 | 5 in parallel
16| 2 19 | 1 | 4 | 2 | 5 | 3

What about high-degree vertices?

Handling high-degree vertices

High-degree
vertex
12 4 | 3 16 2 |1 5 8 |19 4 1 (|23 14 12| 1 9 10 ||3 5
Chunks of size T

o
-1} 2 | 4 | 3
-t

16

2

X

#27}5 8 |19 4 1 #87}14 12 1 1 9 |10
’ ’

-

Encode first entry relative to source vertex

All chunks can be
decoded in parallel!

We chose T=1000

- Similar performance

and space usage for
a wide range of T

Ligra+ Space Savings

Space relative to Ligra using
- byte codes with run-length encoding

mLigra

mLigra+

* Space savings of about 1.3—3x

* Could use more sophisticated schemes to further
reduce space, but more expensive to decode

» Cost of decoding on-the-fly?

Ligra+ Performance

Sin@eHhdativiend@ wdati Bptedigra 40-core time relative to Ligra

m Ligra

mLigra+

* Cost of decoding on-the-fly?

 Memory subsystem is a scalability bottleneck in
parallel as these graph algorithms are memory-bound

« Ligra+ decoding gets better parallel speed up

. S
Ligra Summary

VertexSubset VertexMap EdgeMap

Optimizations: Hybrid traversal
and graph compression

Breadth-first search Single-source shortest paths
Betweenness centrality Eccentricity estimation
Connected components (Personalized) PageRank
Triangle counting Local graph clustering
K-core decomposition Biconnected components

Maximal independent set Collaborative filtering

Simplicity, Performance, Scalability

J. Shun and G. E. Blelloch. Ligra: A Lightweight Graph Processing Framework for
Shared Memory, Principles and Practice of Parallel Programming, 2013.

J. Shun, L. Dhulipala and G. E. Blelloch. Smaller and Faster: Parallel Processing of
Compressed Graphs with Ligra+, Data Compression Conference, 2015.

Code: https://github.com/jshun/ligra/

https://github.com/jshun/ligra/

