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What are graphs?

• Can contain up to billions of vertices and edges
• Need simple, efficient, and scalable ways to 
analyze them
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EdgeVertex Vertex

Graph Data is Everywhere!



Efficient Graph Processing
• Use parallelism

• Design efficient algorithms

• Write/optimize code for each application
• Build a general framework
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Breadth-first search
Betweenness centrality
Connected components
…

Single-source shortest paths
Eccentricity estimation
(Personalized) PageRank
…



Ligra Graph Processing Framework
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EdgeMap VertexMap

Breadth-first search
Betweenness centrality
Connected components
Triangle counting
K-core decomposition
Maximal independent set
Set cover

Single-source shortest paths
Eccentricity estimation
(Personalized) PageRank
Local graph clustering
Biconnected components
Collaborative filtering
…

Simplicity, Performance, Scalability



Graph Processing Systems

• Existing: Pregel/Giraph/GPS, GraphLab, Pegasus, 
Knowledge Discovery Toolbox, GraphChi, etc.

• Our system: Ligra - Lightweight graph processing 
system for shared memory
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Takes advantage of “frontier-based” 
nature of many algorithms 

(active set is dynamic and often small)



Breadth-first Search (BFS)
• Compute a BFS tree rooted at source r containing 
all vertices reachable from r
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• Can process each frontier in parallel
• Race conditions, load balancing

Applications
Betweenness centrality
Eccentricity estimation
Maximum flow
Web crawlers
Network broadcasting
Cycle detection
…



Steps for Graph Traversal
• Operate on a subset of vertices
• Map computation over subset of edges in parallel
• Return new subset of vertices
• Map computation over subset of vertices in parallel
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}

Graph

VertexSubset

EdgeMap

VertexMap

Think with flat data-parallel operators

We built the Ligra abstraction for 
these kinds of computations 

Abstraction enables optimizations
(hybrid traversal and graph compression)

Many graph traversal 
algorithms do this!



Breadth-first Search in Ligra
parents = {-1, …, -1};   //-1 indicates “unexplored”

procedure UPDATE(s, d):
 return compare_and_swap(parents[d], -1, s);

procedure COND(v):
 return parents[v] == -1;   //checks if “unexplored”

procedure BFS(G, r):
 parents[r] = r;
 frontier = {r}; //VertexSubset
 while (size(frontier) > 0):
  frontier = EDGEMAP(G, frontier, UPDATE, COND);
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Actual BFS code in Ligra
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Sparse or Dense EdgeMap?
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Frontier
• Dense method better when 

frontier is large and many 
vertices have been visited

• Sparse (traditional) method 
better for small frontiers

• Switch between the two 
methods based on frontier 
size [Beamer et al. SC ’12]
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Limited to BFS?



EdgeMap
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Loop through outgoing edges 
of frontier vertices in parallel

procedure EDGEMAP(G, frontier, Update, Cond):
 if (size(frontier) + sum of out-degrees > threshold) then:
           return EDGEMAP_DENSE(G, frontier, Update, Cond);
 else:
           return EDGEMAP_SPARSE(G, frontier, Update, Cond);

Loop through incoming edges of 
“unexplored” vertices (in parallel), 
breaking early if possible

• More general than just BFS!
• Generalized to many other problems

• For example, betweenness centrality, connected components, 
sparse PageRank, shortest paths, eccentricity estimation, 
graph clustering, k-core decomposition, set cover, etc.

• Users need not worry about this



Frontier-based approach enables 
hybrid traversal
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PageRank
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VertexMap
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bool f(v){
    data[v] = data[v] + 1;
    return (data[v] == 1);
} 
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PageRank in Ligra
p_curr = {1/|V|, …, 1/|V|};          p_next = {0, …, 0};          diff = {};        error =∞;

procedure UPDATE(s, d):
 atomic_increment(p_next[d], p_curr[s] / degree(s));
 return 1;

procedure COMPUTE(i):
 p_next[i] = α ∙ p_next[i] + (1- α) ∙ (1/|V|);
 diff[i] = abs(p_next[i] – p_curr[i]);
 p_curr[i] = 0;
 return 1;

procedure PageRank(G, α, ε):
 frontier = {0, …, |V|-1};
 while (error > ε):
          frontier = EDGEMAP(G, frontier, UPDATE, CONDtrue);
          frontier = VERTEXMAP(frontier, COMPUTE);
          error = sum of diff entries;
          swap(p_curr, p_next)
 return p_curr;
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PageRank
• Sparse version?

• PageRank-Delta: Only update vertices whose PageRank 
value has changed by more than some Δ-fraction 
(discussed in PowerGraph and McSherry WWW ‘05)
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PageRank-Delta in Ligra

PR[i] = {1/|V|, …, 1/|V|};  
nghSum = {0, …, 0};
Change = {};  //store changes in PageRank values

procedure UPDATE(s, d): //passed to EdgeMap
 atomic_increment(nghSum[d], Change[s] / degree(s));
 return 1;

procedure COMPUTE(i):  //passed to VertexMap
 Change[i] = α ∙ nghSum[i]; 
 PR[i] = PR[i] + Change[i];
 return (abs(Change[i]) > Δ); //check if absolute value of change is big enough
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Performance of Ligra
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Ligra BFS Performance
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Ligra PageRank Performance
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Connected Components Performance
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• Ligra’s performance is close to hand-written code
• Faster than best existing system 
• Subsequent systems have used Ligra’s abstraction and hybrid 

traversal idea, e.g., Galois [SOSP ‘13], Polymer [PPoPP ’15], 
Gunrock [PPoPP ’16], Gemini [OSDI ’16], GraphGrind [ICS ‘17], 
Grazelle [PPoPP ‘18]
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Large Graphs
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6.6 billion edges

128 billion edges

~1 trillion edges [VLDB 2015]

• Most can fit on commodity shared memory machine

Amazon EC2

Example
Dell PowerEdge R930:
Up to 96 cores and 6 TB of RAM



What if you don’t have or can’t afford that 
much memory?
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Ligra+: Adding Graph 
Compression to Ligra
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• Same interface as Ligra
• All changes hidden from the user!
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Ligra+: Adding Graph Compression to Ligra

Graph

VertexSubset

EdgeMap

VertexMap

Interface

Use compressed representation

Decode edges on-the-fly

Same as before

Same as before



Graph representation
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Sort edges and encode differences
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0 0 0 0 0 1 10 0 1 0 0 0 1

• k-bit codes
• Encode value in chunks of k bits
• Use k-1 bits for data, and 1 bit as the “continue” bit

• Example: encode “401” using 8-bit (byte) code
• In binary:
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1 1 0 0 1 0 0 0 1

1 0 0 1 0 0 0 1 0 0 0 0 0 0 1 1

“continue” bit

7 bits for data

Variable-length codes



• Another idea: get rid of “continue” bits
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0 1 0 1 1 0 0 1

Number of bytes 
per integer

Size of group
(max 64)

Header

……
Integers in group 

encoded in byte chunks

• Increases space, but makes decoding cheaper (no branch 
misprediction from checking “continue” bit)

x1 x2 x3 x4 x5 x6 x7 x8 ……
Number of bytes 
required to encode 
each integer

1 2 2 2 2 2 2 2

Use run-length encoding

……

Encoding optimization



• Same interface as Ligra
• All changes hidden from the user!
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Ligra+: Adding Graph Compression to Ligra

Graph
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Interface

Use compressed representation

Decode edges on-the-fly

Same as before

Same as before



• Processes outgoing edges of a subset of vertices
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Modifying EdgeMap

2 5 2 7 9 2 1 3 3VertexSubset

-4 6 3 1 3 5 6 2

5 10 2

30 5
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All vertices processed 
in parallel
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What about high-degree vertices?
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Handling high-degree vertices

-1 2 4 3 16 2 1 5 8 19 4 1 23 14 12 1 9 10 3 5

High-degree 
vertex

…

Chunks of size T

-1 2 4 3 16 2 27 5 8 19 4 1 87 14 12 1 9 10

…

…

Encode first entry relative to source vertex

All chunks can be 
decoded in parallel!

• We chose T=1000
• Similar performance 

and space usage for 
a wide range of T



Ligra+ Space Savings
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• Space savings of about 1.3—3x
• Could use more sophisticated schemes to further 

reduce space, but more expensive to decode
• Cost of decoding on-the-fly?



Ligra+ Performance
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• Cost of decoding on-the-fly?
• Memory subsystem is a scalability bottleneck in 

parallel as these graph algorithms are memory-bound
• Ligra+ decoding gets better parallel speed up
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Ligra Summary
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EdgeMapVertexMap

Breadth-first search
Betweenness centrality
Connected components
Triangle counting
K-core decomposition
Maximal independent set
…

Single-source shortest paths
Eccentricity estimation
(Personalized) PageRank
Local graph clustering
Biconnected components
Collaborative filtering
…

Simplicity, Performance, Scalability

VertexSubset

Optimizations: Hybrid traversal 
and graph compression
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Thank you!

Code: https://github.com/jshun/ligra/ 
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