
A Framework for Processing Large
Graphs in Shared Memory

Julian Shun

Based on joint work with Guy Blelloch and Laxman Dhulipala

What are graphs?

• Can contain up to billions of vertices and edges
• Need simple, efficient, and scalable ways to
analyze them

2

EdgeVertex Vertex

Graph Data is Everywhere!

Efficient Graph Processing
• Use parallelism

• Design efficient algorithms

• Write/optimize code for each application
• Build a general framework

3

Breadth-first search
Betweenness centrality
Connected components
…

Single-source shortest paths
Eccentricity estimation
(Personalized) PageRank
…

Ligra Graph Processing Framework
4

EdgeMap VertexMap

Breadth-first search
Betweenness centrality
Connected components
Triangle counting
K-core decomposition
Maximal independent set
Set cover

Single-source shortest paths
Eccentricity estimation
(Personalized) PageRank
Local graph clustering
Biconnected components
Collaborative filtering
…

Simplicity, Performance, Scalability

Graph Processing Systems

• Existing: Pregel/Giraph/GPS, GraphLab, Pegasus,
Knowledge Discovery Toolbox, GraphChi, etc.

• Our system: Ligra - Lightweight graph processing
system for shared memory

5

Takes advantage of “frontier-based”
nature of many algorithms

(active set is dynamic and often small)

Breadth-first Search (BFS)
• Compute a BFS tree rooted at source r containing
all vertices reachable from r

6

• Can process each frontier in parallel
• Race conditions, load balancing

Applications
Betweenness centrality
Eccentricity estimation
Maximum flow
Web crawlers
Network broadcasting
Cycle detection
…

Steps for Graph Traversal
• Operate on a subset of vertices
• Map computation over subset of edges in parallel
• Return new subset of vertices
• Map computation over subset of vertices in parallel

7

}

Graph

VertexSubset

EdgeMap

VertexMap

Think with flat data-parallel operators

We built the Ligra abstraction for
these kinds of computations

Abstraction enables optimizations
(hybrid traversal and graph compression)

Many graph traversal
algorithms do this!

Breadth-first Search in Ligra
parents = {-1, …, -1}; //-1 indicates “unexplored”

procedure UPDATE(s, d):
 return compare_and_swap(parents[d], -1, s);

procedure COND(v):
 return parents[v] == -1; //checks if “unexplored”

procedure BFS(G, r):
 parents[r] = r;
 frontier = {r}; //VertexSubset
 while (size(frontier) > 0):
 frontier = EDGEMAP(G, frontier, UPDATE, COND);

8

frontier

TT TTF
frontier

Actual BFS code in Ligra
9

Sparse or Dense EdgeMap?
10

11

10

9

12

13

15

14

1

4

3

2

5

8

7

6

Frontier
• Dense method better when

frontier is large and many
vertices have been visited

• Sparse (traditional) method
better for small frontiers

• Switch between the two
methods based on frontier
size [Beamer et al. SC ’12]

11

10

9

12

Limited to BFS?

EdgeMap
11

Loop through outgoing edges
of frontier vertices in parallel

procedure EDGEMAP(G, frontier, Update, Cond):
 if (size(frontier) + sum of out-degrees > threshold) then:
 return EDGEMAP_DENSE(G, frontier, Update, Cond);
 else:
 return EDGEMAP_SPARSE(G, frontier, Update, Cond);

Loop through incoming edges of
“unexplored” vertices (in parallel),
breaking early if possible

• More general than just BFS!
• Generalized to many other problems

• For example, betweenness centrality, connected components,
sparse PageRank, shortest paths, eccentricity estimation,
graph clustering, k-core decomposition, set cover, etc.

• Users need not worry about this

Frontier-based approach enables
hybrid traversal

12

0

2

4

6

8

10

12

14

BFS Betweenness
Centrality

Connected
Components

Eccentricity
Estimation

40
-c

or
e

ru
nn

in
g

tim
e

(s
ec

on
ds

)

Twitter graph (41M vertices, 1.5B edges)

Dense

Sparse

Hybrid

30.7 20.7

(switching
between sparse
and dense using
default threshold
of |E|/20)

PageRank
13

VertexMap
14

0 4 68VertexSubset

4

7

5
2

1

0

6

8

3

68VertexSubset

bool f(v){
 data[v] = data[v] + 1;
 return (data[v] == 1);
}

4

0

6

8

VertexMap

T F F T

PageRank in Ligra
p_curr = {1/|V|, …, 1/|V|}; p_next = {0, …, 0}; diff = {}; error =∞;

procedure UPDATE(s, d):
 atomic_increment(p_next[d], p_curr[s] / degree(s));
 return 1;

procedure COMPUTE(i):
 p_next[i] = α ∙ p_next[i] + (1- α) ∙ (1/|V|);
 diff[i] = abs(p_next[i] – p_curr[i]);
 p_curr[i] = 0;
 return 1;

procedure PageRank(G, α, ε):
 frontier = {0, …, |V|-1};
 while (error > ε):
 frontier = EDGEMAP(G, frontier, UPDATE, CONDtrue);
 frontier = VERTEXMAP(frontier, COMPUTE);
 error = sum of diff entries;
 swap(p_curr, p_next)
 return p_curr;

15

PageRank
• Sparse version?

• PageRank-Delta: Only update vertices whose PageRank
value has changed by more than some Δ-fraction
(discussed in PowerGraph and McSherry WWW ‘05)

16

PageRank-Delta in Ligra

PR[i] = {1/|V|, …, 1/|V|};
nghSum = {0, …, 0};
Change = {}; //store changes in PageRank values

procedure UPDATE(s, d): //passed to EdgeMap
 atomic_increment(nghSum[d], Change[s] / degree(s));
 return 1;

procedure COMPUTE(i): //passed to VertexMap
 Change[i] = α ∙ nghSum[i];
 PR[i] = PR[i] + Change[i];
 return (abs(Change[i]) > Δ); //check if absolute value of change is big enough

17

Performance of Ligra

18

Ligra BFS Performance
19

0

0.05

0.1

0.15

0.2

0.25

0.3

BFS

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Twitter graph (41M vertices, 1.5B edges)

Ligra (40-core
machine)

Hand-written
Cilk/OpenMP (40-core
machine)

0
20
40
60
80

100
120
140
160
180

BFS

Li
ne

s
of

 c
od

e
• Comparing against hybrid traversal BFS code by Beamer et al.

Ligra PageRank Performance
20

0

2

4

6

8

10

12

14

Page Rank (1 iteration)

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Twitter graph (41M vertices, 1.5B edges)

PowerGraph (64 x 8-
cores)

PowerGraph (40-core
machine)

Ligra (40-core
machine)

Hand-written
Cilk/OpenMP (40-core
machine) 0

10
20
30
40
50
60
70
80

Page Rank

Li
ne

s
of

 c
od

e

• Easy to implement “sparse” version of PageRank in Ligra

Connected Components Performance
21

0

50

100

150

200

250

Connected Components

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Twitter graph (41M vertices, 1.5B edges)

PowerGraph (16 x 8-
cores)
[Gonzalez et al.]
PowerGraph (40-core
machine)

Ligra (40-core
machine)

Hand-written
Cilk/OpenMP (40-
core machine) 0

50
100
150
200
250
300
350
400

Connected Components

Li
ne

s
of

 c
od

e

• Ligra’s performance is close to hand-written code
• Faster than best existing system
• Subsequent systems have used Ligra’s abstraction and hybrid

traversal idea, e.g., Galois [SOSP ‘13], Polymer [PPoPP ’15],
Gunrock [PPoPP ’16], Gemini [OSDI ’16], GraphGrind [ICS ‘17],
Grazelle [PPoPP ‘18]

22.5

0

0.5

1

1.5

2

2.5

3

Connected Components

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

3.5 billion vertices
128 billion edges

(540 GB)

Largest publicly
available graph

72-core machine with 1TB RAM Ligra Running time
BFS 12s
Connected components 42s
1 iteration PageRank 28s

Large Graphs
22

6.6 billion edges

128 billion edges

~1 trillion edges [VLDB 2015]

• Most can fit on commodity shared memory machine

Amazon EC2

Example
Dell PowerEdge R930:
Up to 96 cores and 6 TB of RAM

What if you don’t have or can’t afford that
much memory?

23
R

un
ni

ng
 T

im
e

Memory Required

Graph Compression

Ligra+: Adding Graph
Compression to Ligra

24

• Same interface as Ligra
• All changes hidden from the user!

25

Ligra+: Adding Graph Compression to Ligra

Graph

VertexSubset

EdgeMap

VertexMap

Interface

Use compressed representation

Decode edges on-the-fly

Same as before

Same as before

Graph representation
26

0 4 5 11

2 7 9 16 0 1 6 9 12

...

...

Offsets

Edges

2 5 2 7 -1 -1 5 3 3 ...
Compressed

Edges

Vertex IDs 0 1 2 3

Sort edges and encode differences

2 - 0 = 2 7 - 2 = 5 1 - 2 = -1

0 0 0 0 0 1 10 0 1 0 0 0 1

• k-bit codes
• Encode value in chunks of k bits
• Use k-1 bits for data, and 1 bit as the “continue” bit

• Example: encode “401” using 8-bit (byte) code
• In binary:

27

1 1 0 0 1 0 0 0 1

1 0 0 1 0 0 0 1 0 0 0 0 0 0 1 1

“continue” bit

7 bits for data

Variable-length codes

• Another idea: get rid of “continue” bits

28

0 1 0 1 1 0 0 1

Number of bytes
per integer

Size of group
(max 64)

Header

……
Integers in group

encoded in byte chunks

• Increases space, but makes decoding cheaper (no branch
misprediction from checking “continue” bit)

x1 x2 x3 x4 x5 x6 x7 x8 ……
Number of bytes
required to encode
each integer

1 2 2 2 2 2 2 2

Use run-length encoding

……

Encoding optimization

• Same interface as Ligra
• All changes hidden from the user!

29

Ligra+: Adding Graph Compression to Ligra

Graph

VertexSubset

EdgeMap

VertexMap

Interface

Use compressed representation

Decode edges on-the-fly

Same as before

Same as before

• Processes outgoing edges of a subset of vertices

30

Modifying EdgeMap

2 5 2 7 9 2 1 3 3VertexSubset

-4 6 3 1 3 5 6 2

5 10 2

30 5

-16 2 19 1 4 2 5 3

All vertices processed
in parallel

16

25

44

0

7

What about high-degree vertices?

31

Handling high-degree vertices

-1 2 4 3 16 2 1 5 8 19 4 1 23 14 12 1 9 10 3 5

High-degree
vertex

…

Chunks of size T

-1 2 4 3 16 2 27 5 8 19 4 1 87 14 12 1 9 10

…

…

Encode first entry relative to source vertex

All chunks can be
decoded in parallel!

• We chose T=1000
• Similar performance

and space usage for
a wide range of T

Ligra+ Space Savings
32

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

so
c-L
J

cit
-P
ate
nts

co
m-
LJ

co
m-
Or
ku
t

nlp
kk
t24
0

Tw
itte
r

uk
-un
ion

Ya
ho
o

Space relative to Ligra using
byte codes with run-length encoding

Ligra

Ligra+

• Space savings of about 1.3—3x
• Could use more sophisticated schemes to further

reduce space, but more expensive to decode
• Cost of decoding on-the-fly?

Ligra+ Performance
33

0.6
0.7
0.8
0.9
1

1.1
1.2
1.3
1.4

BF
S

Be
tw
ee
nn
es
s

Ec
ce
ntr
ici
ty

Co
mp
on
en
ts

Pa
ge
Ra
nk

Be
llm
an
-Fo
rd

40-core time relative to Ligra

• Cost of decoding on-the-fly?
• Memory subsystem is a scalability bottleneck in

parallel as these graph algorithms are memory-bound
• Ligra+ decoding gets better parallel speed up

0.6
0.7
0.8
0.9
1

1.1
1.2
1.3
1.4

BF
S

Be
tw
ee
nn
es
s…

Ec
ce
ntr
ici
ty

Co
mp
on
en
ts

Pa
ge
Ra
nk

Be
llm
an
-Fo
rd

Single-thread time relative to Ligra

Ligra

Ligra+

0
5
10
15
20
25
30
35
40

BF
S

Be
tw
ee
nn
es
s

Ec
ce
ntr
ici
ty

Co
mp
on
en
ts

Pa
ge
Ra
nk

Be
llm
an
-Fo
rd

Self-relative 40-core Speedup

Ligra

Ligra+

Ligra Summary
34

EdgeMapVertexMap

Breadth-first search
Betweenness centrality
Connected components
Triangle counting
K-core decomposition
Maximal independent set
…

Single-source shortest paths
Eccentricity estimation
(Personalized) PageRank
Local graph clustering
Biconnected components
Collaborative filtering
…

Simplicity, Performance, Scalability

VertexSubset

Optimizations: Hybrid traversal
and graph compression

35

Thank you!

Code: https://github.com/jshun/ligra/

J. Shun and G. E. Blelloch. Ligra: A Lightweight Graph Processing Framework for
Shared Memory, Principles and Practice of Parallel Programming, 2013.

J. Shun, L. Dhulipala and G. E. Blelloch. Smaller and Faster: Parallel Processing of
Compressed Graphs with Ligra+, Data Compression Conference, 2015.

https://github.com/jshun/ligra/

