GraphMineSuite: Enabling
High-Performance and Programmable
Graph Mining Algorithms with Set
Algebra

Maciej Bestal*, Zur Vonarburg-Shmarial, Yannick Schaffner!, Leonardo Schwarz!,
Grzegorz Kwasniewski!, Lukas Gianinazzi!, Jakub Beranek?, Kacper Janda®, Tobias Holenstein?,
Sebastian Leisinger!, Peter Tatkowski', Esref Ozdemir!, Adrian Balla!, Marcin Copik?,
Philipp Lindenberger!, Marek Konieczny®, Onur Mutlu?, Torsten Hoefler!*
1ETH Zurich, Zurich, Switzerland; 2VSB, Ostrava, Czech Republic; >AGH-UST, Krakow, Poland; *Corresponding authors

What is graph mining?

e Graph mining is the process of finding and extracting useful information from
graphs, i.e. sssp, triangle counting, k-cliques, maximal cliques, etc.

e Many real world applications: social sciences, bioinformatics, chemistry,
medicine, cybersecurity, and many others

e Issue #1: graphs can be very large and require a lot of compute power

e Solution #1: Parallelism!

e [ssue #2: Too many choices!

o Hard to keep up and find relevant baseline graph mining algorithms to improve upon, a
plethora of relevant datasets, numerous design choices

e Solution #2: GraphMineSuite (GMS) - a benchmarking suite for
high-performance graph mining algorithms.

Reference implementations oo di Used b Performance metrics
Details: Section 5 o Hiffemented Sec . Details:
MGG Sections5 & 7

- Run-time, - Scalability,
- L3 misses (machine efficiency).

Implementations

Benchmark specification Benchmarking platform

- Algorithms, e
- Optimizations, Details:
- Preprocessing

Details:
Section 4

FEUCTl Sections 3& 5

Graph problems & algorithms Key idea in a novel metric: _

routines, - Simple to use,

- Pattern matching (e.g., clique listing) - Load balancing, - Extensible, ! Cgt‘{;‘},}gem'},‘{g“dbegf’ ;3;2‘,’12 -@&-
- Learning (e.g., link prediction, clustering) - Graph representations, - Modular, a B Riorithinie G B O
- Optimization (e.g., coloring, minimum cuts) - Data layouts, - Public. -@- (algorithmic efficiency).
- Reordering (e.g., degeneracy reordering) - Graph compression, e &
- Parallelizations c Ivsi
Key idea for high modularity: oncuirency analysis
Datasets use set algebra. Sets and set Detalls: Section 6 G
- Sparse & dense, - many & few cliques, Features operations become "modules” Aspects .
- High & low skew of degree distribution, that can be implemented in
- Many & few dense (non-clique) subgraphs, - Parallel, » Modular, different ways, and still they - Performance (work, depth),
- different origins (purchases, roads, ...) - Scalable, - Fast, - ... can be seamlessly combined. - Storage, - Tradeoffs.
| |
]]
: Platform pipeline stages (toolchain execution) i 8 : a dark background and a cube indicate that a particular part of the design g
with details on extensibility and modularity L can be substituted by the developer with their own implementation]
. .
(0 Build graph representation) @Apply preprocessing) ; (o ':rgno?im @ Define algorithm building blocks) Gather
Load graph . ~B 8\ (CSR by default) __Example: Example: [* Example: Triangle The user can plug in variants data
into memory |0 MM N eresemaion s gt N R, Somirg ege e SRRSO |)
r—-} ;g 3 modular P neighborhood size) Solnto mang €3 facilitates it \Agn h appropriate
'n'o_ -__Ne‘ REOIRanaS —m —n modular i mplementanons <
> of vertices — — tc = 0; init_sets() 7 y —
Graph #pragma om allel for schedule (...
@ Define graph acces;es /_acc':sl;e : —— - f:r v%n o p par (-) ==
0 When developing /7 check d(v)’ The user can plug in diflerent preprocessing Th I for w in N(Vv): 8 Most simplicity is ‘
Input e “grﬁ‘;’;r’ ’g%ee"‘}eaé‘;s D iterate over N(v) J schemes. We provide a ready library of ag;g? a;;gﬂtﬁ = '" tc += (NN enabled by p ugn @ Visualize
graph =] the corresponding D checkif 3 (u s such as offer >40 reference d fine buﬂdm blocl 1
= __graph accesses: checkif3(wy)) _ degree reordering (example above). - Y, __impl ions. tc /= 3: cleanup() based on set algebra_/ l
How does GMS o Modular design of 9 Well-defined interface e Enabling running different o Modular design of 6 Clear structure of code facilitating @ Set algebra based
facilitate extensibility classes & files associated (based on set algebra) of preprocessing routines classes & files associated manipulation with fine parts such as modularity for various
at a given stage? with graph representations routines for graph accesses with a single function call with graph algorithms scheduling policy of single loops parts of algorithms

The user can experiment with algorithmic ideas (e.g., new algorithms or data structures), architectural ideas (e.g., using SIMD or instrinsics), and design ideas (e.qg., using novel form of load balancing).

Picture taken from paper

Benchmark specification: Graph Problems

Graph problem Corresponding algorithms E? P.? Why included, what represents? (selected remarks)
e Maximal Clique Listing [48] Bron-Kerbosch [24] + optimizations (e.g., pivoting) [29, 51, 117] r6]5) "® Widely used, NP-complete, example of backtracking
Graph o . Edge-Parallel and Vertex-Parallel general algorithms [41], — . .
Pattsrn e k-Clique Listing [41] different variants of Triangle Counting [104, 107] 0 w» » (high-degree polynomial), example of backtracking
Matching . e . i . X . .
e Dense Subgraph Discovery [5] Listing k-clique-stars [63] and k-cores [54] (exact & approximate) (@] @ "® Different relaxations of clique mining
® Subgraph isomorphism [48] VF2 [40], TurbolSO [58], Glasgow [89], VF3 [26, 28], VF3-Light [27] 7] " Induced vs. non-induced, and backtracking vs. indexing schemes
e Frequent Subgraph Mining [5] BFS and DFS exploration strategies, different isomorphism kernels ol @ Useful when one is interested in many different motifs
o Jaccard, Overlap, Adamic Adar, Resource Allocation, A building block of many more comples schemes,
s Vet sitmllarity [75] Common Neighbors, Preferential Attachment, Total Neighbors [101] 0@ . different methods have different performance properties
Graph . L Variants based on vertex similarity (see above) [7, 80, 83, 114], X . .
Learnping e Link Prediction [114] a scheme for assessing link prediction accuracy [121] (&) @ @ Avery common problem in social network analysis
. Jarvis-Patrick clustering [65] based on different A very common problem in general data mining; the selected
® Clustering [103] vertex similarity measures (see above) [7, 80, 83, 114] 0@ e scheme is an example of overlapping and single-level clustering
e Community detection Label Propagation and Louvain Method [108] "] "® Examples of convergence-based on non-overlapping clustering
Vertex ® Degree reordering A straightforward integer parallel sort "]) Asimple scheme that was shown to bring speedups
Ordering ® Triangle count ranking Computing triangle counts per vertex [§] @) Ranking vertices based on their clustering coefficient
® Degenerecy reordering Exact and approximate [54] [70] @ & Often used to accelerate Bron-Kerbosch and others

Table 3: Graph problems/algorithms considered in GMS. “E.? (Extensibility)” indicates how extensible given implementations are in the GMS benchmarking
platform: “()” indicates full extensibility, including the possibility to provide new building blocks based on set algebra (@) - @,). “ué”: an algorithm that does
not straightforwardly (or extensively) use set algebra. “P.? (Preprocessing) indicates if a given algorithm can be seamlessly used as a preprocessing routine; in the
current GMS version, this feature is reserved for vertex reordering.

Set Algebra

class Set {

public:

//In methods below, we denote "xthis" pointer with A

//(1) Set algebra methods:
Set diff(const Set &B) const; //Return a new set C=A\B
Set diff(SetElement b) const; //Return a new set C=A\{b}
void diff_inplace(const Set &B); //Update A=A\B
void diff_inplace(SetElement b); //Update A=A\ {b}

e Many graph algorithms are/can be
formU|ated With Set algebra 9 Set intersect(const Set &B) const; //Return a new set C=ANB
. R 10 size_t intersect_count(const Set &B) const; //Return |ANB|
e GMS allows users to implement their own 1 i inersectintacecconst sec sb); //updoe 4=AnB

Set union(const Set &B) const;
13 Set union(SetElement b) const; //Return a new set C=AU {b}

sets, set operations, set elements, and set = it s sy unese A=a0.

16 void union_inplace(SetElement b); //Update A=AU{b}

0N U R W N

17 bool contains(SetElement b) const; //Return b €A ? true:false

a|gebra based graph representations_ 18 void add(setElement b); //Update A=AU (b}

19 void remove(SetElement b); //Update A=A\ {b}
20 size_t cardinality() const; //Return set's cardinality

21 //(2) Constructors (selected):
‘ A”OWS users to break Complex graph 22 Set(ci::t”;;t;;:me:: :Zt:rt, size_t count); //From an array
23 Set(); Set(Set &&); //Default and Move constructors
H.- H H H H H 24 Set(SetEl t); //C t t f ingle-el t t
mining algorithms into simple building o BRatic See RanEo(Int Boumdvs ficreate mes (o b o 1]
26 //(3) Other methods:
27 begin() const; //Return iterators to set's start

blocks, and work on these building blocks = enso conses Trrecurn eerarors consees end

29 Set clone() const; //Return a copy of the set
30 void toArray(int32_t *array) const; //Convert set to array

independently 31 operator==; operator!=; //Set equality/inequality comparison
- 32

33 private:
34 using SetElement = GMS::Nodeld; //(4) Define a set element

Algorithm 1: The set algebra interface provided by GMS.

GMS Set Implementations

GMS offers three default set implementations:

e RoaringSet
o Implemented with a “roaring bitmap” that allows for mild compression rates but inexpensive
decompression

e SortedSet
e HashSet

Use Case # 1: Degeneracy Order & k-Cores

e The degeneracy of a graph G is the smallest d such that every subgraph in G

has a vertex of degree at most d.
o A measure of graph sparsity
e Adegeneracy ordering (DGR) is an ordering of vertices of G such that each
vertex has d or fewer neighbors that come later in this ordering
o DGR can be obtained by repeatedly removing a vertex of minimum degree in a graph.
e Ak-core of G is a maximal connected subgraph of G whose all vertices have

degree at least k.
o Ak-core can be obtained by iterating over vertices in the DGR order, and removing vertices with

out-degree less than k 2-core
2 @ _/

Use Case # 1: Degeneracy Order & k-Cores cont.

e |[ssue: Not easily parallelizable, O(n) iterations!
e Solution: GMS offers a (2+€)-approximate degeneracy order (ADG),
O(logn) iterations for any € > 0!

1 //Input: A graph Go. Output: Approx. degeneracy order (ADG) n.
21i=11// Iteration counter

3U =V //U is the induced subgraph used in each iteration i
4 while U # 0 do:

Su = (ZveU |NU(‘0)|9) / |U| //Get the average degree in U
//R contains vertices assigned priority in this iteration:
R={veU: |[Ny®@)|® <@1+e)dy}

for v € R in parallelee do: n(v) = i //assign the ADG order

U = U\R@ //Remove assigned vertices
10 i=1i+1

O 0 NN N G

Use Case # 2: Maximal Clique Listing

A maximal clique of a graph
G is a fully connected
subgraph of G that cannot be
further extended by including
one more adjacent vertex.

KRN

not a clique

non-maximal clique

maximal clique

maximal clique

1 /* Input: A graph Go. Output: all maximal cliques. */
2
3 //Preprocessing: reorder vertices with DGR or ADG.

(v1, U2, ..., vn) = preprocess(V, /* selected vertex order */)9

for v; € (U1, Uy, ..., U,) do: //Iterate over V in a specified order
//For each vertex v;, find maximal cliques containing v;.
9 //First, remove unnecessary vertices from P (candidates
10 //to be included in a clique) and X (vertices definitely
11 //not being in a clique) by intersecting N(v;) with vertices
12 //that follow and precede v; in the applied order.

13 P = N@)N{vis1, 0w on}D; X = N@)n{vy, ... 0i-1}D; R = {v;}

4
5
6 //Main part: conduct the actual clique enumeration.
7
8

15 //Run the Bron-Kerbosch routine recursively for P and X.
16 BK-Pivot(P, {v;j}, X)

18 BK-Pivot (P, R, X) //Definition of the recursive BK scheme

19 if PUX==0@: Output R as a maximal clique

20 wu = pivot(PUX)@ //Choose a "pivot" vertex u € PUX

21 for veP\N(u)@: // Use the pivot to prune search space

22 //New candidates for the recursive search

23 Ppew = PON@)®; Xpew = XON@)D; Rpew = RU{0)}D
24 //Search recursively for a maximal clique that contains o
25 BK-Pivot (Pnew> Rnew> Xnew)

26 //After the recursive call, update P and X to reflect

27 //the fact that v was already considered

28 P=P\{0)®; X = XU{t}D

Use Case # 3: k-Clique Listing

A k-Clique of a graph G is
a fully connected
subgraph of G of k
vertices.

21

/*Input: A graph Go , k €N Output: Count of k-cliques ck e N. =/

//Preprocessing: reorder vertices with DGR or ADG.
//Here, we also record the actual ordering and denote it as p

(v1, U2, ..., vn;n) = preprocess(V, /* selected vertex order */)

//Construct a directed version of G using n. This is an
//additional optimization to reduce the search space:

G = dir(G)e //An edge goes from v to u iff n(v) < n(w)
ck = 0 //We start with zero counted cliques.

for u €V in parallel doze //Count u's neighboring k-cliques
Cy = Nt (u); ck += count(2, G, Cy)

function count(i, G, C;):
if (i == k): return |Ck|@ //Count k-cliques

else:
ci =0

for veci@ do: //search within neighborhood of v
Ciy1 = N+(v)ﬂci@ // C;j counts i-cliques.

ci += count(i+1, G, Cijt1)
return ci

TAKEAWAY: GMS offers lots of modularity in implementing
graph mining algorithms, specifically set algebra based
modularity!

Theoretical Analysis

k-Clique Listing k-Clique Listing * k-Clique Listing ADG Max. Cliques Max. Cliques * Max. Cliques Subgr. Isomorphism Link Prediction™,
Node Parallel [41] Edge Parallel [41] with ADG (§ 6) (Section 6) Eppsteinet al. [51] Das et al. [42] with ADG (§ 7.3) Node Parallel [26, 40])P Clustering
k-2 k-2
Work O mk (%)) o (mk (g)) o (mk (d+ g)"‘z) om) O (dm3d/3) 0 (3"/3) o (dm3(2+€)d/3) o (nAk—l) O(mb)
k-1 k-2
Depth O n+k(g))o n+k(%) +d2) O(k (d+ %)k_2+log2n+dz)0(log2 n) o(dmsd/3) O (dlogn) o(log2n+d10gn)o(Ak-1) o)
Space O(nd? + K)) (md2 % K) o (md2 § K) O(m) O(m+nd+K) O(m+pdA+K)O(m+pdA+K) O(m+nk+K) O(md)

Table 4: Work, depth, and space for some graph mining algorithms in GMS. d is the graph degeneracy, K is the output size, A is the maximum degree, p is the
number of processors, k is the number of vertices in the graph that we are mining for, n is the number of vertices in the graph that we are mining, and m is the

number of edges in that graph. T Link prediction and the JP clustering complexities are valid for the Jaccard, Overlap, Adamic Adar, Resource Allocation, and
Common Neighbors vertex similarity measures. xAlgorithms derived in this work.

e Obtained better bounds for maximal cliques
e Obtained similar bounds for k-clique, but scales better depending

on graph

Evaluation: Datasets, Methodology, Architectures

GMS uses a wide selection of
public datasets for flexibility

GMS compares GMS variants to
the most optimized state-of-the-art
algorithms.

GMS runs algorithms on the
maximum number of cores
available on machine.

Table 5: Some considered real-world graphs. Graph class/origin: [so]: social
network, [wb]: web graph, [st]: structural network, [sc]: scientific computing,
[re]: recommendation network, [bi]: biological network, [co]: communica-
tion network, [ec]: economics network, [ro]: road graph. Structural features:
m/n: graph sparsity, d;: maximum in-degree, d,: maximum out-degree, T:
number of triangles, T/n: average triangle count per vertex, T-skew: a skew
of triangle counts per vertex (i.e., the difference between the smallest and the
largest number of triangles per vertex). Here, T is the maximum number of
triangles per vertex in a given graph. Dataset: (W), (S), (K), (D), (C), and (N)
refer to the publicly available datasets, explained in § 8.1. For more details,
see § 4.2.

% :1-: E; T % Why selected/special?

Graph n m
[so] (K) Orkut 3M 117M
[so] (K) Flickr 2.3M 22.8M

[so] (K) Libimseti 221k 17.2M
[so] (K) Youtube 32M 9.3M
[so] (K) Flixster 2.5M 7.91M
[so] (K) Livemocha 104k 2.19M
[so] (N) Ep-trust 132k 841k
[so] (N) FB comm. 35.1k 1.5M
wb] (K) DBpedia 12.1M 288M
wb] (K) Wikipedia 18.2M 127M
wb] (K) Baidu 2.14M 17M
[wb] (N) WikiEdit ~ 94.3k 5.7M

[st] (N) Chebyshev4 68.1k 5.3M

[st] (N) Gearbox 154k 4.5M

[st] (N) Nemeth25 10k 751k
[st] (N) F2 715k 2.6M
[sc] (N) Gupta3 16.8k 4.7M
[sc] (N) Idoor 952k 20.8M

[re] (N) MovieRec ~ 70.2k 10M
[re] (N) RecDate 169k 17.4M
[bi] (N) sc-ht (gene) 2.1k 63k
[bi] (N) AntColony6 164 10.3k
[bi] (N) AntColony5 152 9.1k

[co] (N) Jester2 50.7k 1.7M
[co] (K) Flickr

(photo relations) 1osk 231M
[ec] (N) mbeacxc 492 49.5k
[ec] (N) orani678 2.5k 89.9k

[ro] (D) USA roads 23.9M 28.8M

38.1 33.3k 33.3k 628M 204.3 Common, relatively large
9.9 21k 26.3k 838M 363.7 Large T but low m/n.
78 33.3k 25k 69M 312.8 Large m/n
2991.7k 91.7k 122M 3.8 Very low m/n and T
3.1 14k 1.4k 7.89M 3.1 Verylow m/nand T

Similar to Flickr, but
2141 298k 208k 3860, 825 a lot fewer 4-cliques (4.36M)

6 3.6k 3.6k 27.9M 212 Huge T-skew (T = 108k)

415 8.2k 82k 364M 1k Large T-skew (T = 159k)
23.7 963k 963k 11.68B 961.8 Rather low m/n but high T
6.9 632k 632k 328M 18.0 Common, very sparse
7.9 979k 2.5k 25.2M 11.8 Very sparse

60.4 107k 107k 835M 8.9k Large T-skew (T: 15.7M)
Very large T and T /n

and T-skew (f = 5.8M)

Low Ebut large T;

low T-skew (T = 1.7k)

751 192 192 87M 9k Huge T but low T = 12k

36.5 344 344 110M 1.5k Medium T-skew (T =9.6k)
280 14.7k 14.7k 696M 41.5k Huge T-skew (T = 1.5M)
215 76 76 567M 595 Very low T-skew (T = 1.1k)

142.4 35.3k 35.3k 983M 14k Huge T and T= 4.9M

102.5 33.4k 33.4k 286M 1.7k Enormous T-skew (f =1.6M)

77.8 68.1k 68.1k 445M 6.5k

292 98 98 141IM 915

30 472 472 42M 2k Large T-skew (T = 27.7k)
628 157 157 1.IM 6.6k Very low T-skew (T = 9.7k)
59.8 150 150 897k 5.9k Very low T-skew (T = 8.8k)

33.5 50.8k 50.8k 127M 2.5k Enormous T-skew (T = 2.3M)

219 54k 54k 108M 1019 Similar to Livemocha, but
oo . many more 4-cliques (9.58B)

9M 18.2k Large T, low f =77.7k

8.7M 3.4k Large T, low T = 80.8k
1.3M 0.1 Extremely low m/n and T

100.5 679 679

355 1.7k 1.7k
1.2 9 9

Maximal Cli

Results

ique

Social networks

tworks

IC, various ne

Structural, scientif

Epinions-trust

FB comm 12

Orkut Epinions

sc-ldoor

Gearbox

Chebyshev4

Biological networks

2.0

Nemeth24

Web graphs
Wikipedia

Economics networks

Road graph

Communication, recommendation networks

Baidu

40

2.0 oranié78

mbeacxc

20

RecMovies

80 RecDate 20000

Jester2

Ant-colony5 5 .. Genes-SC-HT

Ant-colony6

400

BK-GMS-ADG : BK with approximate degeneracy reordering (proposed in this work)

BK-GMS-DEG: BK with simple degree reordering BK-GMS-ADG-S : BK-GMS-ADG plus subgraph optimization (proposed in this work)

BK-GMS-DGR : BK with degeneracy reordering

rbosch by Das et al.
, main competitor)

-Ke
DAS

Kerbosch - Fraction needed . Bron
S code) for reordering (BK-

M

ey

Results: Maximal Clique cont.

e Achieved a significant improvement in maximal clique using ADG or DGR.
e GMS variants often faster than main competitor by >50%, sometimes even

>Ox.
o Consistent over graphs of different structural characteristics

e Another view (algorithmic efficiency): number of maximal cliques found per
second

Nemeth24 Jester2 Ant-colony5 orani678
(structural network) (communication graph) (biological network) (economics network)
= OpenMP 6 /gpenMP OpenMP
ag SERY 8-10 \\ 3460 Zoti NS 88 4108 /c/>penMP
8 610° TBB 6108 TRB 6 Yy e
53 . LS 25 3108 310 ==\
: 6
ig“o 410 2.108 2108
%%2'105 2108 7 1108 1.108
o
22 o o A 0 3 0 - 0
== R RCPCHCACPN O 0L 20,0 > O 500,060 & Q20,000 >
FEOSESST EOFEH " TILOTET SETIEE s
SRS R AA A

[BK with the GMS code, OpenMP [BK with the GMS code, Intel TBB [[]BK by Das etal. (a recent baseline)

GMS-DGR : BK with degeneracy reordering (a variant by Eppstein et al.) GMS-DEG : BK with simple degree reordering
GMS-ADG : BK with approximate degeneracy reordering (a baseline obtained with GMS)
GMS-ADG-S : BK-GMS-ADG plus subgraph optimization (a baseline obtained with GMS)

-

More Results

e Up to 10% speedup on k-clique algorithm with
different parameters.

e ADG outperforms DGR as a preprocessor for
Bron-Kerbosch.

Reordering analysis
Graph: Youtube

0.5
0.1)
0.01)

L

8

-
2
0

3 B
a

IGMS (ADG, €

GMS (ADG, €
" GMS (ADG, €

runtime [s]

| ; Bron-Kerbosch by
| Reordering [{l Eppstein (BK-E)

Figure 4: Speedups of
ADG for different ¢
over DEG/DGR, details
in § 8.4. System: Ault.

Additional Analyses

e Subtleties of higher-order structures 1e+03
Tested case

o Graphs similar in number of vertices, number of = mining_time 10
. . . % mining_ _time 11
edges, sparsity, degree distribution etc., can have

rocessing_time 10

) , 0 1e+01 1 *Bre rocessing_time 11
very different higher-order structures, such as o Number is
number of 4-cliques. Choose datasets wisely! % graphiscale
e Using synthetic graphs can affect whether g 1ol 5
vertex reordering or mining dominates ke

1e-03

Kronecker
graphs with T
(ﬁ%vrg Idalgvt 1 4 16 64 256

areused Average #edges / vertex

M|ssmg pomts are tlmeouts

(a) Analysis of synthetic graphs.

Thank you! Any questions?

