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What is graph mining?

● Graph mining is the process of finding and extracting useful information from 
graphs, i.e. sssp, triangle counting, k-cliques, maximal cliques, etc.

● Many real world applications: social sciences, bioinformatics, chemistry, 
medicine, cybersecurity, and many others

● Issue #1: graphs can be very large and require a lot of compute power
● Solution #1:  Parallelism!
● Issue #2: Too many choices!

○ Hard to keep up and find relevant baseline graph mining algorithms to improve upon, a 
plethora of relevant datasets, numerous design choices

● Solution #2: GraphMineSuite (GMS) - a benchmarking suite for 
high-performance graph mining algorithms.



Picture taken from paper



Benchmark specification: Graph Problems



Set Algebra

● Many graph algorithms are/can be 
formulated with set algebra

● GMS allows users to implement their own 
sets, set operations, set elements, and set 
algebra based graph representations.

● Allows users to break complex graph 
mining algorithms into simple building 
blocks, and work on these building blocks 
independently. 



GMS Set Implementations

GMS offers three default set implementations:

● RoaringSet
○ Implemented with a “roaring bitmap” that allows for mild compression rates but inexpensive 

decompression
● SortedSet
● HashSet



Use Case # 1: Degeneracy Order & k-Cores

● The degeneracy of a graph G is the smallest d such that every subgraph in G 
has a vertex of degree at most d. 

○ A measure of graph sparsity
● A degeneracy ordering (DGR) is an ordering of vertices of G such that each 

vertex has d or fewer neighbors that come later in this ordering
○ DGR can be obtained by repeatedly removing a vertex of minimum degree in a graph.

● A k-core of G is a maximal connected subgraph of G whose all vertices have 
degree at least k.

○ A k-core can be obtained by iterating over vertices in the DGR order, and removing vertices with 
out-degree less than k



Use Case # 1: Degeneracy Order & k-Cores cont.

● Issue: Not easily parallelizable, O(n) iterations!
● Solution: GMS offers a (2+ϵ)-approximate degeneracy order (ADG), 

O(logn) iterations for any ϵ > 0!



Use Case # 2: Maximal Clique Listing

● A maximal clique of a graph 
G is a fully connected 
subgraph of G that cannot be 
further extended by including 
one more adjacent vertex.



Use Case # 3: k-Clique Listing

● A k-Clique of a graph G is 
a fully connected 
subgraph of G of k 
vertices. 



TAKEAWAY: GMS offers lots of modularity in implementing 
graph mining algorithms, specifically set algebra based 

modularity!



Theoretical Analysis

● Obtained better bounds for maximal cliques
● Obtained similar bounds for k-clique, but scales better depending 

on graph



Evaluation: Datasets, Methodology, Architectures
● GMS uses a wide selection of 

public datasets for flexibility
● GMS compares GMS variants to 

the most optimized state-of-the-art 
algorithms.

● GMS runs algorithms on the 
maximum number of cores 
available on machine.



Results: Maximal Clique



Results: Maximal Clique cont.

● Achieved a significant improvement in maximal clique using ADG or DGR.
● GMS variants often faster than main competitor by >50%, sometimes even 

>9x.
○ Consistent over graphs of different structural characteristics

● Another view (algorithmic efficiency): number of maximal cliques found per 
second



More Results

● Up to 10% speedup on k-clique algorithm with 
different parameters.

● ADG outperforms DGR as a preprocessor for 
Bron-Kerbosch. 



Additional Analyses

● Subtleties of higher-order structures
○ Graphs similar in number of vertices, number of 

edges, sparsity, degree distribution etc., can have 
very different higher-order structures, such as 
number of 4-cliques. Choose datasets wisely!

● Using synthetic graphs can affect whether 
vertex reordering or mining dominates



Thank you! Any questions?


