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What is graph mining?

e Graph mining is the process of finding and extracting useful information from
graphs, i.e. sssp, triangle counting, k-cliques, maximal cliques, etc.

e Many real world applications: social sciences, bioinformatics, chemistry,
medicine, cybersecurity, and many others

e Issue #1: graphs can be very large and require a lot of compute power

e Solution #1: Parallelism!

e [ssue #2: Too many choices!

o Hard to keep up and find relevant baseline graph mining algorithms to improve upon, a
plethora of relevant datasets, numerous design choices

e Solution #2: GraphMineSuite (GMS) - a benchmarking suite for
high-performance graph mining algorithms.
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Benchmark specification: Graph Problems

Graph problem Corresponding algorithms E? P.?  Why included, what represents? (selected remarks)
e Maximal Clique Listing [48] Bron-Kerbosch [24] + optimizations (e.g., pivoting) [29, 51, 117] r6]5) "®  Widely used, NP-complete, example of backtracking
Graph o . Edge-Parallel and Vertex-Parallel general algorithms [41], — . .
Pattsrn e k-Clique Listing [41] different variants of Triangle Counting [104, 107] 0 w» » (high-degree polynomial), example of backtracking
Matching . e . i . X . .
e Dense Subgraph Discovery [5]  Listing k-clique-stars [63] and k-cores [54] (exact & approximate) (@] @ "®  Different relaxations of clique mining
® Subgraph isomorphism [48] VF2 [40], TurbolSO [58], Glasgow [89], VF3 [26, 28], VF3-Light [27] 7] " Induced vs. non-induced, and backtracking vs. indexing schemes
e Frequent Subgraph Mining [5]  BFS and DFS exploration strategies, different isomorphism kernels ol @ Useful when one is interested in many different motifs
o Jaccard, Overlap, Adamic Adar, Resource Allocation, A building block of many more comples schemes,
s Vet sitmllarity [75] Common Neighbors, Preferential Attachment, Total Neighbors [101] 0@ . different methods have different performance properties
Graph . L Variants based on vertex similarity (see above) [7, 80, 83, 114], X . .
Learnping e Link Prediction [114] a scheme for assessing link prediction accuracy [121] (&) @ @  Avery common problem in social network analysis
. Jarvis-Patrick clustering [65] based on different A very common problem in general data mining; the selected
® Clustering [103] vertex similarity measures (see above) [7, 80, 83, 114] 0@ e scheme is an example of overlapping and single-level clustering
e Community detection Label Propagation and Louvain Method [108] "] "®  Examples of convergence-based on non-overlapping clustering
Vertex ® Degree reordering A straightforward integer parallel sort "] )  Asimple scheme that was shown to bring speedups
Ordering  ® Triangle count ranking Computing triangle counts per vertex [§] @ ) Ranking vertices based on their clustering coefficient
® Degenerecy reordering Exact and approximate [54] [70] @ &  Often used to accelerate Bron-Kerbosch and others

Table 3: Graph problems/algorithms considered in GMS. “E.? (Extensibility)” indicates how extensible given implementations are in the GMS benchmarking
platform: “()” indicates full extensibility, including the possibility to provide new building blocks based on set algebra (@) - @, ). “ué”: an algorithm that does
not straightforwardly (or extensively) use set algebra. “P.? (Preprocessing) indicates if a given algorithm can be seamlessly used as a preprocessing routine; in the
current GMS version, this feature is reserved for vertex reordering.



Set Algebra

class Set {

public:

//In methods below, we denote "xthis" pointer with A

//(1) Set algebra methods:
Set diff(const Set &B) const; //Return a new set C=A\B
Set diff(SetElement b) const; //Return a new set C=A\{b}
void diff_inplace(const Set &B); //Update A=A\B
void diff_inplace(SetElement b); //Update A=A\ {b}

e Many graph algorithms are/can be
formU|ated With Set algebra 9 Set intersect(const Set &B) const; //Return a new set C=ANB
. R 10 size_t intersect_count(const Set &B) const; //Return |ANB|
e GMS allows users to implement their own 1 i inersectintacecconst sec sb); //updoe 4=AnB

Set union(const Set &B) const;
13  Set union(SetElement b) const; //Return a new set C=AU {b}

sets, set operations, set elements, and set = it s sy unese A=a0.

16 void union_inplace(SetElement b); //Update A=AU{b}

0N U R W N

17 bool contains(SetElement b) const; //Return b €A ? true:false

a|gebra based graph representations_ 18 void add(setElement b); //Update A=AU (b}

19  void remove(SetElement b); //Update A=A\ {b}
20 size_t cardinality() const; //Return set's cardinality

21 //(2) Constructors (selected):
‘ A”OWS users to break Complex graph 22 Set(ci::t”;;t;;:me:: :Zt:rt, size_t count); //From an array
23 Set(); Set(Set &&); //Default and Move constructors
H.- H H H H H 24  Set(SetEl t); //C t t f ingle-el t t
mining algorithms into simple building o BRatic See RanEo(Int Boumdvs ficreate mes (o b o 1]
26 //(3) Other methods:
27 begin() const; //Return iterators to set's start

blocks, and work on these building blocks = enso conses Trrecurn eerarors consees end

29 Set clone() const; //Return a copy of the set
30 void toArray(int32_t *array) const; //Convert set to array

independently 31 operator==; operator!=; //Set equality/inequality comparison
- 32

33 private:
34 using SetElement = GMS::Nodeld; //(4) Define a set element

Algorithm 1: The set algebra interface provided by GMS.



GMS Set Implementations

GMS offers three default set implementations:

e RoaringSet
o Implemented with a “roaring bitmap” that allows for mild compression rates but inexpensive
decompression

e SortedSet
e HashSet



Use Case # 1: Degeneracy Order & k-Cores

e The degeneracy of a graph G is the smallest d such that every subgraph in G

has a vertex of degree at most d.
o A measure of graph sparsity
e Adegeneracy ordering (DGR) is an ordering of vertices of G such that each
vertex has d or fewer neighbors that come later in this ordering
o DGR can be obtained by repeatedly removing a vertex of minimum degree in a graph.
e Ak-core of G is a maximal connected subgraph of G whose all vertices have

degree at least k.
o Ak-core can be obtained by iterating over vertices in the DGR order, and removing vertices with

out-degree less than k 2-core
2 @ \_/



Use Case # 1: Degeneracy Order & k-Cores cont.

e |[ssue: Not easily parallelizable, O(n) iterations!
e Solution: GMS offers a (2+€)-approximate degeneracy order (ADG),
O(logn) iterations for any € > 0!

1 //Input: A graph Go. Output: Approx. degeneracy order (ADG) n.
21i=11// Iteration counter

3U =V //U is the induced subgraph used in each iteration i
4 while U # 0 do:

Su = (ZveU |NU(‘0)|9) / |U| //Get the average degree in U
//R contains vertices assigned priority in this iteration:
R={veU: |[Ny®@)|® <@1+e)dy}

for v € R in parallelee do: n(v) = i //assign the ADG order

U = U\R@ //Remove assigned vertices
10 i=1i+1

O 0 NN N G




Use Case # 2: Maximal Clique Listing

A maximal clique of a graph
G is a fully connected
subgraph of G that cannot be
further extended by including
one more adjacent vertex.

KRN

not a clique

non-maximal clique

maximal clique

maximal clique

1 /* Input: A graph Go. Output: all maximal cliques. */
2
3 //Preprocessing: reorder vertices with DGR or ADG.

(v1, U2, ..., vn) = preprocess(V, /* selected vertex order */)9

for v; € (U1, Uy, ..., U,) do: //Iterate over V in a specified order
//For each vertex v;, find maximal cliques containing v;.
9 //First, remove unnecessary vertices from P (candidates
10 //to be included in a clique) and X (vertices definitely
11 //not being in a clique) by intersecting N(v;) with vertices
12 //that follow and precede v; in the applied order.

13 P = N@)N{vis1, 0w on}D; X = N@)n{vy, ... 0i-1}D; R = {v;}

4
5
6 //Main part: conduct the actual clique enumeration.
7
8

15 //Run the Bron-Kerbosch routine recursively for P and X.
16 BK-Pivot(P, {v;j}, X)

18 BK-Pivot (P, R, X) //Definition of the recursive BK scheme

19 if PUX==0@: Output R as a maximal clique

20 wu = pivot(PUX)@ //Choose a "pivot" vertex u € PUX

21 for veP\N(u)@: // Use the pivot to prune search space

22 //New candidates for the recursive search

23 Ppew = PON@)®; Xpew = XON@)D; Rpew = RU{0)}D
24 //Search recursively for a maximal clique that contains o
25 BK-Pivot (Pnew> Rnew> Xnew)

26 //After the recursive call, update P and X to reflect

27 //the fact that v was already considered

28 P=P\{0)®; X = XU{t}D




Use Case # 3: k-Clique Listing

A k-Clique of a graph G is
a fully connected
subgraph of G of k
vertices.

21

/*Input: A graph Go , k €N Output: Count of k-cliques ck e N. =/

//Preprocessing: reorder vertices with DGR or ADG.
//Here, we also record the actual ordering and denote it as p

(v1, U2, ..., vn;n) = preprocess(V, /* selected vertex order */)

//Construct a directed version of G using n. This is an
//additional optimization to reduce the search space:

G = dir(G)e //An edge goes from v to u iff n(v) < n(w)
ck = 0 //We start with zero counted cliques.

for u €V in parallel doze //Count u's neighboring k-cliques
Cy = Nt (u); ck += count(2, G, Cy)

function count(i, G, C;):
if (i == k): return |Ck|@ //Count k-cliques

else:
ci =0

for veci@ do: //search within neighborhood of v
Ciy1 = N+(v)ﬂci@ // C;j counts i-cliques.

ci += count(i+1, G, Cijt1)
return ci




TAKEAWAY: GMS offers lots of modularity in implementing
graph mining algorithms, specifically set algebra based
modularity!



Theoretical Analysis

k-Clique Listing k-Clique Listing * k-Clique Listing ADG Max. Cliques Max. Cliques * Max. Cliques  Subgr. Isomorphism Link Prediction™,
Node Parallel [41] Edge Parallel [41] with ADG (§ 6) (Section 6) Eppsteinet al. [51] Das et al. [42] with ADG (§ 7.3)  Node Parallel [26, 40] )P Clustering
k-2 k-2
Work O mk (%) ) o (mk (g) ) o (mk (d+ g)"‘z) om) O (dm3d/3) 0 (3"/3) o (dm3(2+€)d/3) o (nAk—l) O(mb)
k-1 k-2
Depth O n+k(g) )o n+k(%) +d2) O(k (d+ %)k_2+log2n+dz)0(log2 n) o(dmsd/3) O (dlogn) o(log2n+d10gn)o(Ak-1) o)
Space O(nd? + K) ) (md2 % K) o (md2 § K) O(m) O(m+nd+K) O(m+pdA+K)O(m+pdA+K) O(m+nk+K) O(md)

Table 4: Work, depth, and space for some graph mining algorithms in GMS. d is the graph degeneracy, K is the output size, A is the maximum degree, p is the
number of processors, k is the number of vertices in the graph that we are mining for, n is the number of vertices in the graph that we are mining, and m is the

number of edges in that graph. T Link prediction and the JP clustering complexities are valid for the Jaccard, Overlap, Adamic Adar, Resource Allocation, and
Common Neighbors vertex similarity measures. xAlgorithms derived in this work.

e Obtained better bounds for maximal cliques
e Obtained similar bounds for k-clique, but scales better depending

on graph



Evaluation: Datasets, Methodology, Architectures

GMS uses a wide selection of
public datasets for flexibility

GMS compares GMS variants to
the most optimized state-of-the-art
algorithms.

GMS runs algorithms on the
maximum number of cores
available on machine.

Table 5: Some considered real-world graphs. Graph class/origin: [so]: social
network, [wb]: web graph, [st]: structural network, [sc]: scientific computing,
[re]: recommendation network, [bi]: biological network, [co]: communica-
tion network, [ec]: economics network, [ro]: road graph. Structural features:
m/n: graph sparsity, d;: maximum in-degree, d,: maximum out-degree, T:
number of triangles, T/n: average triangle count per vertex, T-skew: a skew
of triangle counts per vertex (i.e., the difference between the smallest and the
largest number of triangles per vertex). Here, T is the maximum number of
triangles per vertex in a given graph. Dataset: (W), (S), (K), (D), (C), and (N)
refer to the publicly available datasets, explained in § 8.1. For more details,
see § 4.2.

% :1-: E; T % Why selected/special?

Graph n m
[so] (K) Orkut 3M 117M
[so] (K) Flickr 2.3M 22.8M

[so] (K) Libimseti 221k 17.2M
[so] (K) Youtube 32M 9.3M
[so] (K) Flixster 2.5M 7.91M
[so] (K) Livemocha 104k 2.19M
[so] (N) Ep-trust 132k 841k
[so] (N) FB comm. 35.1k 1.5M
wb] (K) DBpedia  12.1M 288M
wb] (K) Wikipedia 18.2M 127M
wb] (K) Baidu 2.14M  17M
[wb] (N) WikiEdit ~ 94.3k 5.7M

[st] (N) Chebyshev4 68.1k 5.3M

[st] (N) Gearbox 154k 4.5M

[st] (N) Nemeth25 10k 751k
[st] (N) F2 715k 2.6M
[sc] (N) Gupta3 16.8k 4.7M
[sc] (N) Idoor 952k 20.8M

[re] (N) MovieRec ~ 70.2k 10M
[re] (N) RecDate 169k 17.4M
[bi] (N) sc-ht (gene) 2.1k 63k
[bi] (N) AntColony6 164 10.3k
[bi] (N) AntColony5 152 9.1k

[co] (N) Jester2 50.7k 1.7M
[co] (K) Flickr

(photo relations) 1osk 231M
[ec] (N) mbeacxc 492 49.5k
[ec] (N) orani678 2.5k 89.9k

[ro] (D) USA roads 23.9M 28.8M

38.1 33.3k 33.3k 628M 204.3 Common, relatively large
9.9 21k 26.3k 838M 363.7 Large T but low m/n.
78 33.3k 25k 69M 312.8 Large m/n
2991.7k 91.7k 122M 3.8 Very low m/n and T
3.1 14k 1.4k 7.89M 3.1 Verylow m/nand T

Similar to Flickr, but
2141 298k 208k 3860, 825 a lot fewer 4-cliques (4.36M)

6 3.6k 3.6k 27.9M 212 Huge T-skew (T = 108k)

415 8.2k 82k 364M 1k Large T-skew (T = 159k)
23.7 963k 963k 11.68B 961.8 Rather low m/n but high T
6.9 632k 632k 328M 18.0 Common, very sparse
7.9 979k 2.5k 25.2M 11.8 Very sparse

60.4 107k 107k 835M 8.9k Large T-skew (T: 15.7M)
Very large T and T /n

and T-skew (f = 5.8M)

Low Ebut large T;

low T-skew (T = 1.7k)

751 192 192 87M 9k Huge T but low T = 12k

36.5 344 344 110M 1.5k Medium T-skew (T =9.6k)
280 14.7k 14.7k 696M 41.5k Huge T-skew (T = 1.5M)
215 76 76 567M 595 Very low T-skew (T = 1.1k)

142.4 35.3k 35.3k 983M 14k Huge T and T= 4.9M

102.5 33.4k 33.4k 286M 1.7k Enormous T-skew (f =1.6M)

77.8 68.1k 68.1k 445M 6.5k

292 98 98 141IM 915

30 472 472 42M 2k Large T-skew (T = 27.7k)
628 157 157 1.IM 6.6k Very low T-skew (T = 9.7k)
59.8 150 150 897k 5.9k Very low T-skew (T = 8.8k)

33.5 50.8k 50.8k 127M 2.5k Enormous T-skew (T = 2.3M)

219 54k 54k 108M 1019 Similar to Livemocha, but
oo . many more 4-cliques (9.58B)

9M 18.2k Large T, low f =77.7k

8.7M 3.4k Large T, low T = 80.8k
1.3M 0.1 Extremely low m/n and T

100.5 679 679

355 1.7k 1.7k
1.2 9 9
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Results: Maximal Clique cont.

e Achieved a significant improvement in maximal clique using ADG or DGR.
e GMS variants often faster than main competitor by >50%, sometimes even

>Ox.
o Consistent over graphs of different structural characteristics

e Another view (algorithmic efficiency): number of maximal cliques found per
second

Nemeth24 Jester2 Ant-colony5 orani678
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= OpenMP 6 /gpenMP OpenMP
ag SERY 8-10 \\ 3460 Zoti NS 88 4108 /c/>penMP
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GMS-DGR : BK with degeneracy reordering (a variant by Eppstein et al.) GMS-DEG : BK with simple degree reordering
GMS-ADG  : BK with approximate degeneracy reordering (a baseline obtained with GMS)
GMS-ADG-S : BK-GMS-ADG plus subgraph optimization (a baseline obtained with GMS)
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More Results

e Up to 10% speedup on k-clique algorithm with
different parameters.

e ADG outperforms DGR as a preprocessor for
Bron-Kerbosch.

Reordering analysis
Graph: Youtube
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Additional Analyses

e Subtleties of higher-order structures 1e+03
Tested case

o  Graphs similar in number of vertices, number of = mining_time 10
. . . % mining_ _time 11
edges, sparsity, degree distribution etc., can have

rocessing_time 10

) , 0 1e+01 1 *Bre rocessing_time 11
very different higher-order structures, such as o Number is
number of 4-cliques. Choose datasets wisely! % graphiscale
e Using synthetic graphs can affect whether g 1ol 5
vertex reordering or mining dominates ke

1e-03

Kronecker
graphs with T
(ﬁ%vrg Idalgvt 1 4 16 64 256

areused  Average #edges / vertex

M|ssmg pomts are tlmeouts

(a) Analysis of synthetic graphs.



Thank you! Any questions?



