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Recurring theme: operating on sets of
vertices

Example: count number of 4-cliques (same idea as counting triangles)

Main idea: Use probabilistic set representations to approximate!

/* Input: A graph G. Output: Number of 4-cliques ck € N. =x/
/Derive a vertex order R s.t. if R(v) < R(u) then dy < dy:
for v € V [in par] do: N = {u € Ny|R(v) < R(u)}

= O,

for w € V [in par] do:
for v € N;L [in par] do:
C3 = N;LON;L //Find 3-cliques
for w € C3 do: //For each 3-clique...

ck += |N1'U|'mC’3| //Find 4-cliques




Bloom Filter

Key idea: use bit vector to approximate set
Parameterized by length | and b hash functions hy, ..., hy




MinHash

k-Hash variant: 1-Hash variant
- Have k independent hash functions - Have a single hash function
hy, ..., hi - Retain k elements with k smallest
- For each hash, retain an element with I ENES
a minimum hash for a total of k - Sampling WITHOUT replacement

retained elements
- Sampling WITH replacement
- Multiset



Estimation background

Biased coin, heads with probability p, but we don’t know what p is.
Flip the coin n times. How to estimate p given data X4, X, ... X;?

n n
1
D= argmaXprj(l —P)l_xj - ij
P =1 j=1




Estimation background

Let s = p2?
How to estimate s?




Estimation background

Let s = p2
How to estimate s?
Bias in this estimator, but still MLE
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Bloom Filter Estimation

Weakness: This is not a very useful proposition because we don’t know the number
of 1's in the bloom filter for the intersection. The authors note this, but they resolve
with an unsatisfying/not-fully-motivated approximation (bitwise and).

Proposition IV.1. Let \X/H\Y | anp be the estimator defined
in Eq. (2). For Bxny,b € N such that b = o(n/Bxny ), and
a set X NY such that b|X NY| < 0.499Bxny - log Bxny
the following holds:

B | (K07 1ap - 1X Y1) <

(14 0(1)) (€|X0Ylb/(8xmy—1)BXmY Bxny M)
b



\ SRER NI Al la N | \/ v N My | ~ Bin(k, Jxy)

Need to be careful about multiset intersections. (Discuss example)
MLE estimate

Jxy =|XNY|/|[XUY]
XUY| = |X|+|Y]-|XNnY]

JXYkH

XYy = (IXT+1Y1)

JXYkH

J L |MxﬂMyl
XY L —




\ k-Hash estimation

A

Proposition IV.2. Let | X NY|, ., be the estimator from
Eq. (5). Then, an upper bound for the probability of deviation
from the true | X NY|, at a given distance t > 0, is:

2k t2

P (||X/ﬂ\Y\kH — meYy‘ > t) < 2¢” UX+IVDZ  (6)




\ 1-Hash estimation




\ 1-Hash estimation

Proposition IV.3. Consider | X NY|,,. Then, an upper
bound for the probability of deviation from the true intersec-
tion set size, at a given distance t > 0, is:

2k t2

P (’|X/H\Y\1H — | XN Y|‘ > t) < 2¢ (XI+IYD)?




Estimation summary

Result Where AU CN ML IN AE

@S\ Eq. (1) BF Ok Ok X X X
I XNY|,np ¥ Eq (2 BF Ok Ok X x x
XNY|, & §IVB  BF Ok Ok X x x
XY, Eq. 5) k-Hsh Ok Ok Ok Ok Ok
XN Y|,y §IVD 1-Hash Ok Ok X %X X

TABLE II: Summary of theoretical results (estimators) related to |/X\| and

| X NY|. “H”: a new result provided in this work (a new estimator or proving
a certain novel property of a given estimator). “CN”: a consistent estimator.
“AU”: an asymptotically unbiased estimator. “ML”: an MLE estimator. “IN”:
an invariant estimator. “AE”: an asymptotically efficient estimator.




Estimation summary

Result Where

i —

|X/{Li Eq. (1) BF P %
I XNY|,nvp X Eq (3 BF P %
XNY|, % § IV-B BF P %
X NY|, ;K Eq. (6) k-Hash E %

XNY|,; %  Eq (7 1Hah E%

TABLE III: Summary of theoretical results (bounds) related to \/X\\ and

|X/ﬂ\Y | . “¥: a new result provided in this work. “Q”: the quality of
a given bound, “P”: polynomial, “E”: exponential. “MS”: an MSE bound.
“CO”: a concentration bound.




Application of ideas

- Store graph in CSR format

- Parameter O < s <1 to choose how much extra storage to use for PG estimators

- Bloom filter is a bitvector (no surprise)

- Min-Hash are series of integers



Application of ideas

PG (MH)
Triangle Counting (work): (n )
Triangle Counting (depth): O (logd)
O (nd?)
(log d)
(
(
(
(

4-Clique Counting (work):
4-Clique Counting (depth):
Clustering (work): nd )
log d)
&)

log d)

Vertex sim. (work):

S © 0 0 0 O O O

O
O
Clustering (depth): O
O
O

Vertex vim. (depth):

TABLE VI: Advantages of ProbGraph in work and depth over exact baselines.




Application of ideas

Theorem VIL1. Let TC, be the estimator of the number of
triangles. (cLS\ection I1l). Then, depending on the underlying
estimator | X NY|,, we have the following cases:

For the Bloom Filter AND estimator, if bA
0.499Bx log Bx, then we have the following bound

. Ab
2m2(1+ o(1)) (e Bx -

£ (‘TC N VD‘ 2 t) < 9 ¢2

In the case of both 1-Hash and k-Hash (below, we use the
notation for 1-Hash), we have

)

P (‘T( - TEIH’ > t) < 2exp <—ﬁ>

Moreover, if the maximum degree is A\, then

P <’TC‘ = Z’F\Cm‘ > t) < 2exp GW)




Application of ideas

- The k-Hash TC estimator is MLE

- Comparison to other triangle estimators like GAP, ASAP, MCMC

- Tested on datasets like SNAP, KONECT (K), DIMACS

-  Tested on Dell PowerEdge R910 server with an Intel Xeon X7550 CPUs @ 2.00GHz
with 18 MB L3 cache, 1TiB RAM, and 32 cores per CPU



Experimental analysis

- Estimate size of intersection of neighborhoods (no one estimator performs best, but
increasing storage space generally increases performance)

Relative dif erence:

%

R

Fig. 3: Analysis of the accuracy of PG estimators of | X NY|.



Experimental analysis

Min-Hash: Bloom Filter
- Highest speedups - High accuracy
- lower memory requirements - High speedups

- lower accuracy



Experimental analysis

- Speedups of 30x or more over baselines while preserving 90% or higher accuracy
- Only about 25% extra storage needed
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Advantages of ProbGraph over previous
work

- Theoretical bounds provided on estimators

- Observe better performance than previous “heuristic” methods

- Generalized approach to estimation, meaning these ideas can be applied uniformly to a
wide range of problems

- Offers good (often strong) scaling because load balance issues mitigated by uniform
data structure sizes

- Future work: try to develop or integrate other probabilistic set representations into
ProbGraph

- Look for/analyze algorithms that require set unions instead of intersections (advantages
offered to bloom filter)



