An Experimental Analysis of a
Compact Graph
Representation

Daniel K. Blandford Guy E. Blelloch [Ian A. Kash

Computer Science Department
Carnegie Mellon University

Graph Separators

An edge-separator is a set of
edges that, when removed,
partitions a graph into two almost
equal sized parts

A vertex separator is a set of
vertices that when removed (along
with its incident edges) partitions a
graph into two almost equal parts.
The minimum separator for a
graph is the separator that
minimizes the number of
edges/vertices removed.

Edge Separator

Why are separators important?

e A graph has good separators if it and its subgraphs have minimum separators
that are significantly better than expected for a random graph of its size.

e Many real world graphs have good separators because they are based on
communities or embedded in low dimensional space.

e \We can use separators to reorder vertices in graph representations so that we
can exploit locality and improve cache misses.

Graph Compression With Separators

Algorithm:

1. Generate an edge separator tree for the graph.
2. Label the vertices in-order across the leaves.
3. Use an adjacency table to represent the relabled graph.

Edge Separator Tree

Each node contains a subgraph of G and a separator for that subgraph
The children of a node contain the two components of the graph induced by
the separator.
Bottom-up algorithm: start with a complete graph and repeatedly collapse
edges until a single vertex remains.
Heuristic for collapsing edges: w(E ;) / (s(A)s(B))

o W(E,g) is the number of edges between multivertices A and B

o s(A) is the number of original vertices contained in multivertex A
Child flipping optimization: Another heuristic that decides which child is left
and which is right

2. Labeling

e Each leaf node of the edge separator tree represents a single vertex in the
graph
e Assign labels to leaves in order to encapsulate the “order” based on locality

3. Adjacency Table

e For each vertex, store the neighbors in a difference-encoded adjacency list
o If avertex v has neighbors Vs Voy oee s Vg in sorted order, then the data structure encodes the
differences v,- v, v,-v,, ... v - v, . contiguously in memory
e Differences are encoded using any logarithmic code, a prefix code which
uses O(log d) bits to encode a difference of size s.
o Also store a sign bit

e Concatenate adjacency lists together in order to form adjacency table.
o At the start of each list, also store a code for number of entries in the list

3. Adjacency Table cont

e \We need an indexing structure to efficiently index into our adjacency table
e Semi-direct-16: structure that stores the start locations for sixteen vertices in
five 32-bit words.

o The first word contains the offset to vertex 0.

o The second word contains three ten-bit offsets from vertex O for vertex 4, 8 and 12.

o The next three words contain twelve eight-bit offsets from respective encoded vertex.
o If offsets do not fit, we store a pointer to vertex.

3. Adjacency Table cont

e Implemented logarithmic codes:
o Gamma code
m Unary code for [log d1 followed by binary code for d-2*Tlog d1 for a total of 1+2Llog d|

bits
o Ak-bit code
m Each block starts with a continue bit, which indicates if an integer i is greater than
27(k-1) bits

If 0, store binary representation of i-1 in the remainder k-1 bits

If 1, store binary representation for (i-1) mod 2*(k-1) in remainder k-1 bits and then
L(i-1)/2”(k-1).

snip(k=2), nibble(k=4), byte(k=8)

Machines are optimized to manipulate bytes and words rather than arbitrary bit
sequences

Graph Compression With Separators Lemma

We say that S satisfies a f(n)-edge separator theorem if there are constants a
< 1 and 3 > 0 such that every graph in S with n vertices has a set of at most
Bf(n) edges whose removal separates the graph into components with at most
an vertices each.

Lemma: For a class of graphs satisfying an n“-edge separator theorem, and
labelings based on the separator tree satisfying the bounds of the separator
theorem, the adjacency table for any n-vertex member requires O(n) bits.

Dynamic Representation

e Memory is managed in blocks of fixed size and each vertex is initialized with

one memory block

e Every 1024 vertices have their own pool of contiguous memory blocks.
o Poolis resized when memory runs out
e A vertex’s blocks are connected into a linked list
o Hashing technique allows for 8 bit pointers but requires that a constant fraction of the blocks
remain empty.
o Test values of pointer value i in the range 0 to 127 until the result of the hash is unused block.
o If memory pool is at most 80% full, then probability that this technique will fail is at most
80728 ~ 4*107(-13).
e Additional temporary structures for storing neighbors are used to improve
caching with regards to time locality.

Experimental Setup (Machines, Compilers, Benchmarks)

e Two different machines with 32-bit processors.
o Pentium 4 performs better than Pentium Il when there is strong spatial locality
e Use adjacency lists and adjacency array (static)

o Test random insertion order for adjacency lists, linear, transpose, and random.
o Test vertex order for both: randomized and separator

e Test representations using DFS

Read Find Insert
Graph DFS | Linear | Random | Next | Linear | Random | Transpose | Space
ListRand 1.000 | 0.631 0.995 0.508 | 1.609 17.719 3.391 76.405
ListOrdr 0.710 | 0.626 0.977 | 0.516 | 1.551 17.837 1.632 76.405
LEDARand | 3.163 | 2.649 3.038 2.518 | 17.543 | 19.342 17.880 432.636
LEDAOrdr 2.751 | 2.168 2.878 1.726 | 11.846 | 19.365 11.783 432.636
DynSpace 0.626 | 0.503 0.715 0.433 | 17.791 | 22.520 18.423 11.608
DynTime 0.422 | 0.342 0.531 0.335 | 13.415 | 16.926 13.866 17.900
CachedSpace | 0.614 | 0.498 0.723 0.429 | 2.616 25.380 7.788 13.36
CachedTime | 0.430 | 0.355 0.558 0.360 | 2.597 | 20.601 6.569 17.150
ArrayRand 0.729 | 0.319 0.643 0.298 — — — 38.202
ArrayOrdr 0.429 | 0.319 0.639 0.302 — == — 38.202
Byte 0.330 | 0.262 0.501 0.280 —= = — 12.501
Nibble 0.488 | 0.411 0.646 0.387 — — s 9.357
Snip 0.684 | 0.625 0.856 0.538 —= — = 9.07
Gamma 0.854 | 0.764 1.016 0.640 —= —s _— 9.424

Table 6: Summary of space and normalized times for various operations on the Pentium III.

Read Find Insert
Graph DFS | Linear | Random | Next | Linear | Random | Transpose | Space
ListRand 1.000 | 0.099 0.744 | 0.121 | 0.571 28.274 3.589 76.405
ListOrdr 0.322 | 0.096 0.740 | 0.119 | 0.711 28.318 0.864 76.405
LEDARand | 2.453 | 1.855 2.876 2.062 | 16.802 | 21.808 16.877 432.636
LEDAOrdr 1.119 | 0.478 2.268 | 0.519 | 7.570 20.780 7.657 432.636
DynSpace 0.633 | 0.440 0.933 | 0.324 | 14.666 | 23.901 15.538 11.608
DynTime 0.367 | 0.233 0.650 | 0.222 | 9.725 15.607 10.183 18.763
CachedSpace | 0.622 | 0.431 0.935 | 0.324 | 2.433 28.660 8.975 13.34
CachedTime | 0.368 | 0.240 0.690 | 0.246 | 2.234 19.849 6.600 19.073
ArrayRand 0.945 | 0.095 0.638 | 0.092 — — s 38.202
ArrayOrdr 0.263 | 0.092 0.641 0.092 — — = 38.202
Byte 0.279 | 0.197 0.693 | 0.205 = —= — 12.501
Nibble 0.513 | 0.399 0.873 | 0.340 — — — 9.357
Snip 0.635 | 0.562 1.044 | 0.447 — — = 9.07
Gamma 0.825 | 0.710 1.188 | 0.521 — — — 9.424

Table 5: Summary of space and normalized times for various operations on the Pentium 4.

Experimental Setup (Graphs)

Max

Graph Vtxs | Edges |Degree Source
auto | 448695 |6629222| 37 | 3D mesh [35]
feocean | 143437 | 819186 6 3D mesh [35]
m14b 214765 | 3358036 | 40 3D mesh [35]
ibm17 | 185495 |4471432| 150 circuit [1]
ibm18 | 210613 |4443720| 173 circuit [1]
CA 19712815533214| 12 |street map [34]
PA 10909203083796| 9 |street map [34]
googlel | 916428 (5105039 | 6326 | web links [10]
googleO | 916428 (5105039 | 456 | web links [10]
lucent | 112969 | 363278 | 423 routers [25]
scan 228298 | 640336 | 1937 | routers [25]

Table 1: Properties of the graphs used in our experi-

ments.

Results (Static vs adjacency array)

Array Our Structure
Rand Sep Byte Nibble Snip Gamma DiffByte
Graph T T/T: | Space | T/T1 | Space | T/T: | Space | T/T:1 | Space | T/T1 | Space | T/T1 | Space
auto 0.268s | 0.313 | 34.17 | 0.294 | 10.25 | 0.585 | 7.42 | 0.776 | 6.99 | 1.063 | 7.18 | 0.399 | 12.33
feocean | 0.048s | 0.312 | 37.60 | 0.312 | 12.79 | 0.604 | 10.86 | 0.791 | 11.12 1.0 11.97 | 0.374 | 13.28
ml4h 0.103s | 0.388 34.05 0.349 10.01 0.728 7.10 0.970 6.55 1.320 6.68 0.504 11.97
ibm17 0.095s | 0.536 | 33.33 | 0.536 | 10.19 | 1.115 | 7.72 | 1.400 | 7.58 | 1.968 | 7.70 | 0.747 | 12.85
ibm18 0.113s | 0.398 | 33.52 | 0.442 | 10.24 | 0.867 | 7.53 | 1.070 | 7.18 | 1.469 | 7.17 | 0.548 | 12.16
CA 0.920s | 0.126 | 43.40 | 0.146 | 14.77 | 0.243 | 10.65 | 0.293 | 10.55 | 0.333 | 11.25 | 0.167 | 14.81
PA 0.487s | 0.137 | 43.32 | 0.156 | 14.76 | 0.258 | 10.65 | 0.310 | 10.60 | 0.355 | 11.28 | 0.178 | 14.80
lucent 0.030s | 0.266 | 41.95 0.3 14.53 0.5 11.05 | 0.566 | 10.79 | 0.700 | 11.48 | 0.333 | 14.96
scan 0.067s | 0.208 | 43.41 | 0.253 | 15.46 | 0.402 | 11.84 | 0.477 | 11.61 | 0.552 | 12.14 | 0.298 | 16.46
googlel [0.367s | 0.226 | 37.74 | 0.258 | 11.93 | 0.405 | 839 | 0452 | 7.37 | 0.539 | 7.19 | 0.302 [13.39
googleO | 0.363s | 0.250 | 37.74 | 0.278 | 12.59 | 0460 | 9.72 | 0.556 | 9.43 | 0.702 | 9.63 | 0.327 | 13.28
Avg 0.287 | 38.202 | 0.302 | 12.501 | 0.561 | 9.357 | 0.696 | 9.07 | 0.909 | 9.424 | 0.380 | 13.662

Table 2: Performance of our static algorithms compared to performance of an adjacency array representation.
Space is in bits per edge; time is for a DFS, normalized to the first column, which is given in seconds.

Results (Block sizes)

3 4 8 12 16 20

Graph Ty Space | T/T1 | Space | T/T1 | Space | T/T1 | Space | T/T1 | Space | T/T1 | Space
auto 0.318s | 11.60 | 0.874 | 10.51 | 0.723 | 9.86 | 0.613 | 10.36 | 0.540 | 9.35 | 0.534 | 11.07
feocean | 0.044s | 14.66 | 0.863 | 13.79 | 0.704 | 12.97 | 0.681 | 17.25 | 0.727 | 22.94 | 0.750 | 28.63
m14b 0.146s | 11.11 | 0.876 | 10.07 | 0.684 | 9.41 | 0.630 [10.00 | 0.554 | 8.92 | 0.554 | 10.46
ibm17 0.285s | 12.95 | 0.849 | 11.59 | 0.614 | 10.44 | 0.529 | 10.53 | 0.491 | 10.95 | 0.459 | 11.39
ibm18 0.236s | 12.41 | 0.847 | 11.14 | 0.635 | 10.12 | 0.563 | 10.36 | 0.521 | 10.97 0.5 11.64

CA 0.212s | 10.62 | 0.943 | 12.42 | 0.952 | 23.52 1.0 35.10 | 1.018 | 46.68 | 1.066 | 58.26
PA 0.119s | 10.69 | 0.941 | 12.41 | 0.949 | 23.35 1.0 34.85 | 1.025 | 46.35 | 1.058 | 57.85
lucent 0.018s | 13.67 | 0.888 | 14.79 | 0.833 | 22.55 | 0.833 | 31.64 | 0.833 | 41.22 | 0.888 | 51.09
scan 0.034s | 15.23 | 0.941 | 16.86 | 0.852 | 26.39 | 0.852 | 37.06 | 0.852 | 48.08 | 0.882 | 59.34

googlel | 0.230s [11.91 | 0.895 | 12.04 | 0.752 | 15.71 | 0.730 | 20.53 | 0.730 | 25.78 | 0.726 | 31.21
googleO | 0.278s | 13.62 | 0.863 | 13.28 | 0.694 | 15.65 | 0.658 | 19.52 | 0.640 | 24.24 | 0.676 | 29.66
Avg 12.58 | 0.889 | 12.62 | 0.763 | 16.36 | 0.735 | 21.56 | 0.721 | 26.86 | 0.736 | 32.78

Table 3: Performance of our dynamic algorithm using nibble codes with various block sizes. For each size we give
the space needed in bits per edge (assuming enough blocks to leave the secondary hash table 80% full) and the
time needed to perform a DFS. Times are normalized to the first column, which is given in seconds. .

Results (Dynamic vs Linked Lists)

Linked List Our Structure
Random Vtx Order Sep Vtx Order Space Opt Time Opt
Rand | Trans Lin Rand | Trans Lin Block | Time Block | Time
Graph T T/ | T/Ty | T/Th | T/Th | T/Ty | Space Size | T/T1 | Space Size | T/T: | Space
auto 1.160s | 0.512 | 0.260 [0.862 | 0.196 | 0.093 | 68.33 16 0.148 9.35 20 0.087 | 13.31

feocean | 0.136s | 0.617 | 0.389 | 0.801 | 0.176 | 0.147 | 75.21 8 0.227 | 12.97 10 0.117 | 14.71
m1l4b 0.565s | 0.442 | 0.215 | 0.884 | 0.184 | 0.090 | 68.09 16 0.143 8.92 20 0.086 | 13.53
ibm17 0.735s | 0.571 | 0.152 | 0.904 | 0.357 | 0.091 | 66.66 12 0.205 | 10.53 20 0.118 | 14.52
ibm18 0.730s | 0.524 | 0.179 | 0.890 | 0.276 | 0.080 | 67.03 10 0.190 | 10.13 20 0.108 | 14.97

CA 1.240s | 0.770 | 0.705 | 0.616 | 0.107 | 0.101 | 86.80 3 0.170 | 10.62 5 0.108 | 15.65
PA 0.660s | 0.780 [0.701 | 0.625 | 0.112 [0.109 | 86.64 3 0.180 | 10.69 5 0.115 | 15.64
lucent 0.063s | 0.634 | 0.492 | 0.730 | 0.190 | 0.142 | 83.90 3 0.285 | 13.67 6 0.174 | 20.49
scan 0.117s | 0.735 | 0.555 | 0.700 | 0.188 | 0.128 | 86.82 3 0.290 | 15.23 8 0.170 | 28.19
googlel | 0.975s | 0.615 [0.376 | 0.774 | 0.164 | 0.096 | 75.49 4 0.211 | 12.04 16 0.125 | 28.78
googleO | 0.960s | 0.651 | 0.398 | 0.786 | 0.162 | 0.108 | 75.49 5 0.231 | 13.54 16 0.123 | 26.61

Avg 0.623 | 0.402 | 0.779 | 0.192 | 0.108 | 76.405 0.207 | 11.608 0.121 | 18.763

Table 4: The performance of our dynamic algorithms compared to linked lists. For each graph we give the space-
and time-optimal block size. Space is in bits per edge; time is for a DFS, normalized to the first column, which
is given in seconds.

Summary

e The paper proposes and implements a compressed graph representation
using edge separators.

e \WVe see a significant improvement in space and time performance for the
static representation and dynamic representation

e The paper also shows the importance of different orderings in any graph
representations

