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Graph Separators

● An edge-separator is a set of 
edges that, when removed, 
partitions a graph into two almost 
equal sized parts

● A vertex separator is a set of 
vertices that when removed (along 
with its incident edges) partitions a 
graph into two almost equal parts. 

● The minimum separator for a 
graph is the separator that 
minimizes the number of 
edges/vertices removed.

Edge Separator

Vertex Separator



Why are separators important?

● A graph has good separators if it and its subgraphs have minimum separators 
that are significantly better than expected for a random graph of its size.

● Many real world graphs have good separators because they are based on 
communities or embedded in low dimensional space. 

● We can use separators to reorder vertices in graph representations so that we 
can exploit locality and improve cache misses.



Graph Compression With Separators

Algorithm:

1. Generate an edge separator tree for the graph.
2. Label the vertices in-order across the leaves.
3. Use an adjacency table to represent the relabled graph.



1. Edge Separator Tree

● Each node contains a subgraph of G and a separator for that subgraph
● The children of a node contain the two components of the graph induced by 

the separator. 
● Bottom-up algorithm: start with a complete graph and repeatedly collapse 

edges until a single vertex remains.
● Heuristic for collapsing edges: w(EAB) / (s(A)s(B))

○ w(EAB) is the number of edges between multivertices A and B
○ s(A) is the number of original vertices contained in multivertex A

● Child flipping optimization: Another heuristic that decides which child is left 
and which is right



2. Labeling

● Each leaf node of the edge separator tree represents a single vertex in the 
graph

● Assign labels to leaves in order to encapsulate the “order” based on locality



3. Adjacency Table

● For each vertex, store the neighbors in a difference-encoded adjacency list
○ If a vertex v has neighbors v1, v2, … , vd, in sorted order, then the data structure encodes the 

differences v1- v, v2- v1, … vd - vd-1 contiguously in memory
● Differences are encoded using any logarithmic code, a prefix code which 

uses O(log d) bits to encode a difference of size s.
○ Also store a sign bit

● Concatenate adjacency lists together in order to form adjacency table.
○ At the start of each list, also store a code for number of entries in the list



3. Adjacency Table cont

● We need an indexing structure to efficiently index into our adjacency table
● Semi-direct-16: structure that stores the start locations for sixteen vertices in 

five 32-bit words.
○ The first word contains the offset to vertex 0.
○ The second word contains three ten-bit offsets from vertex 0 for vertex 4, 8 and 12.
○ The next three words contain twelve eight-bit offsets from respective encoded vertex.
○ If offsets do not fit, we store a pointer to vertex.



3. Adjacency Table cont

● Implemented logarithmic codes:
○ Gamma code

■ Unary code for ⌈log d⌉ followed by binary code for d-2^⌈log d⌉ for a total of 1+2⌊log d⌋ 
bits

○ A k-bit code
■ Each block starts with a continue bit, which indicates if an integer i is greater than 

2^(k-1) bits
■ If 0, store binary representation of  i-1 in the remainder k-1 bits
■ If 1, store binary representation for (i-1) mod 2^(k-1) in remainder k-1 bits and then 

⌊(i-1)/2^(k-1)⌋
■ snip(k=2), nibble(k=4), byte(k=8)
■ Machines are optimized to manipulate bytes and words rather than arbitrary bit 

sequences



Graph Compression With Separators Lemma

● We say that S satisfies a f(n)-edge separator theorem if there are constants α 
< 1 and β > 0 such that every graph in S with n vertices has a set of at most 
βf(n) edges whose removal separates the graph into components with at most 
αn vertices each. 

● Lemma: For a class of graphs satisfying an nc-edge separator theorem, and 
labelings based on the separator tree satisfying the bounds of the separator 
theorem, the adjacency table for any n-vertex member requires O(n) bits.



Dynamic Representation

● Memory is managed in blocks of fixed size and each vertex is initialized with 
one memory block

● Every 1024 vertices have their own pool of contiguous memory blocks.
○ Pool is resized when memory runs out

● A vertex’s blocks are connected into a linked list
○ Hashing technique allows for 8 bit pointers but requires that a constant fraction of the blocks 

remain empty.
○ Test values of pointer value i in the range 0 to 127 until the result of the hash is unused block.
○ If memory pool is at most 80% full, then probability that this technique will fail is at most 

.80^128 ~ 4*10^(-13).
● Additional temporary structures for storing neighbors are used to improve 

caching with regards to time locality.



Experimental Setup (Machines, Compilers, Benchmarks)

● Two different machines with 32-bit processors.
○ Pentium 4 performs better than Pentium III when there is strong spatial locality

● Use adjacency lists and adjacency array (static)
○ Test random insertion order for adjacency lists, linear, transpose, and random.
○ Test vertex order for both: randomized and separator

● Test representations using DFS



Experimental Setup (Graphs)



Results (Static vs adjacency array)



Results (Block sizes)



Results (Dynamic vs Linked Lists)



Summary

● The paper proposes and implements a compressed graph representation 
using edge separators.

● We see a significant improvement in space and time performance for the 
static representation and dynamic representation

● The paper also shows the importance of different orderings in any graph 
representations


