
CompressGraph: Efficient Parallel Graph
Analytics with Rule-Based Compression

Zheng Chen et. al
Review by Anika Cheerla

Introduction

Real world graphs are gigantic and redundant!

How can we use redundancy to have smaller compressed graphs and faster graph
analytics?

The CompressGraph Approach

1) Compressing graphs through rule-based abstraction saves time by removing
the need for decompressing.

2) CompressGraph is general and supports a wide-range of graph applications.
3) CompressGraph scales well under high-parallelism.

Existing Graph Compressions

Adjacency matrices and lists

Graph encoding:

1) Variable-length encoding
2) Reference encoding
3) Interval encoding
4) Gap encoding

On the fly decompression difficult to parallelize

Text Analytics Directly on Compression (TADOC)

Rule-based compression that uses context-free grammar rules to represent text
data

rule R represents a subsequence that happens multiple times in the data

Text Analytics Directly on Compression (TADOC)

rule R represents a subsequence that happens multiple times in the data

Text Analytics Directly on Compression (TADOC)

rule R represents a subsequence that happens multiple times in the data

Text Analytics Directly on Compression (TADOC)

rule R represents a subsequence that happens multiple times in the data

Text Analytics Directly on Compression (TADOC)
Representation

R2 R1 R0
Word frequencies computation

CompressGraph takes inspiration from TADOC

rule defined as a repeated set of neighbors

CompressGraph takes inspiration from TADOC

rule defined as set of neighbors

CompressGraph takes inspiration from TADOC

rule defined as set of neighbors

BFS on CompressGraph

1) Put initial vertex in
queue

2) Graph traversal: Visit
unvisited neighbors
and put in queue

3) Rule traversal:
Expand newly
encountered rules
into vertices and put
in queue

4) Pop first element of
queue, then 2)

BFS Program

vertex to vertex and
vertex to rule increment
distance by 1

rule to vertex or rule
doesn’t change distance

INIT: visited

Finite State Machine
FSM w/ states defined by W (unprocessed), G (processing), B(done)

In each state transition:

take out v or r in G, traverse neighbors and add to G, put element into B

CompressGraph can handle any vertex and its neighbors

Given graph vertex 𝑣 with neighbor set {𝑢1, 𝑢2, ..., 𝑢𝑛}:

If Edge <𝑣, 𝑢𝑖> Exists in Compressed Graph:

● Process <𝑣, 𝑢𝑖> with operation 𝑂𝑣2𝑣
● Process 𝑢𝑖 with operation 𝐶𝑣
● Determine whether to add 𝑢𝑖 to 𝑆𝑡𝑎𝑡𝑒.𝐺

If Edge <𝑣, 𝑢𝑖> Does Not Exist in Compressed Graph:

● Path <𝑣, 𝑟1, ..., 𝑟𝑚, 𝑢𝑖> exists in compressed graph using rules only
● Perform rule traversal to process <𝑣, 𝑢𝑖> in original graph
● Use 𝑂𝑣2𝑟 to process <𝑣, 𝑟1>, 𝑂𝑟2𝑟 to process <𝑟𝑖, 𝑟𝑖+1>, and 𝑂𝑟2𝑣 to process <𝑟𝑚, 𝑢𝑖>
● Use 𝐶𝑟 to determine whether to add {𝑟1, 𝑟2, ..., 𝑟𝑚} to 𝑆𝑡𝑎𝑡𝑒.𝐺

Rule Traversal: Use the 𝑅𝑒𝑠𝑢𝑙𝑡 field of rules to store intermediate results

Key takeaways

1) The repeated sequence of neighboring vertices is represented by a rule that
takes less space.

2) Rule-based compression reduces redundant computations by caching and
reusing results for rules.

3) Rule-based compression allows processing directly on the compressed graph,
avoiding expensive decoding operations.

Two-level traversal

Parallel Strategies
Inter thread

also process rules in parallel

V V V

V
V V R

R

R

thread 0

thread 1

thread 3

V

V V V

V
V V R

R

R

thread 0 thread 1 thread 2

V

thread 4

thread 2

Intra thread

process vertices in parallel

N = average # of iterations to traverse each rule in current state
N < 4: intra-thread
N>= 4 inter-thread

thread 5

 Inter-Level Synchronization-Free Graph Traversal

 Avoid rule-level synchronization waiting to make full use of GPU capacity.

 Enables rules and vertices at different graph levels to work simultaneously.

O((|V|+|E|+|R|)/N)

Can only be applied to:

1) Result irrelevant to graph level
2) Only one level of graph traversal per round

 Inter-Level
Synchronization-Free
Graph Traversal

Graph
traversal

Rule
traversal

Rule
traversal

Graph
traversal

Graph
traversal

In-Edge Support Handling Write Conflicts

inverted edges can save |E|atomic operations by pulling data from destination
rather than pushing data to the destination

Speedup results

State-of-the-art compression
Ligra+ and Gunrock.

Comparison across 6
common graph application
and 12 datasets of various
redundancies.

Average of 1.97x speedup
over Ligra and 3.95x over
Gunrock.

Time/space measurement

Compare the number of
processed edges per second
to the ratio of the size of the
graph to the number of
edges.

Feature benefit breakdown

Dynamic rule-traversal has ~18% improvement over intra-thread and ~51%
improvement over inter-tread.

Synchronization-free traversal gives ~42% improvement. Effective for BFS and
HITS.

In-edge has ~28% performance improvement.

Conclusions

Serially,

Enabling direct processing on compressed graphs has large space and time
improvements.

Parallelly,

CompressGraph can be optimized to handle parallelism without decompressing
the graph.

Strengths and weaknesses, directions for future work

CompressGraph’s rule construction expects redundancy in graphs.

In 3 cases, TP sort is slower on CompressGraph than state of the art:

- rule-level synchronization waiting
- smaller, denser graphs with less redundancy

No performance on dynamic graphs.

