Decoding billions of integers per
second through vectorization

Paper by D. Lemire and L. Boytsov
Presentation by Xander Morgan

Problem Statement: Optimize Space and

- We would like to encode and decode large arrays of integers efficiently in terms of
space and time, i.e., achieve good compression and high rate of processing

- Focus on 32-bit integer sequences, often sorted

- Main memory, rather than disk, often limits computation speed in modern algorithms

- Applications in search engines and relational databases

Aside to illustrate compression ideas
(Space optimization is a solved problem)

Suppose we have a 4-sided die. The probabilities of the sides are listed below. We would like
to roll this die many times and communicate results to a friend using a sequence of bits. How

to efficiently do this?
Side Probability
0 1/4
1 1/4
2 1/4
3 1/4

Aside to illustrate compression ideas
(Space optimization is a solved problem)

Suppose we have a 4-sided die. The probabilities of the sides are listed below. We would like
to roll this die many times and communicate results to a friend using a sequence of bits. How
to efficiently do this?

Side Probability Bit representation
0 1/4 00
1 1/4 01
2 1/4 10
3 1/4 11

Aside to illustrate compression ideas
(Space optimization is a solved problem)

Suppose we have a 4-sided die. The probabilities of the sides are listed below. We would like
to roll this die many times and communicate results to a friend using a sequence of bits. How

to efficiently do this?
Side Probability
0 1/2
1 1/4
2 1/8
3 1/8

Aside to illustrate compression ideas
(Space optimization is a solved problem)

Suppose we have a 4-sided die. The probabilities of the sides are listed below. We would like
to roll this die many times and communicate results to a friend using a sequence of bits. How
to efficiently do this?

Side Probability Bit representation
0 1/2 0

1 1/4 10

2 1/8 110

3 1/8 111

Aside to illustrate compression ideas
(Space optimization is a solved problem)

Given a probability distribution px(-) over a set {x4, ..., Xn}, the average number of bits
required to encode i.i.d. symbols from this distribution is at least

Furthermore, there are coding algorithms that can (with some nuance) achieve this
bound

\ Binary and Unary

Binary:
1->1
2->10
3->11
Unary:
1->1
2->01

3->001

Elias gamma and delta coding

- Elias gamma: encode number of bits in unary, followed by binary representation of the
number (without the MSB)

- Elias delta: encode number of bits using Elias gamma, followed by binary representation
of the number (without the MSB)

Variable byte encoding

- Breakinteger into 7 bit chunks. Each 7 bit chunk is stored in a byte, with O as the 8th bit
denoting “continue” and 1 denoting “end”

- E.g., 11001000 gets encoded as 10000001 01001000

Varint-GB and Varint-G8lU

Varint-GB Varint-G8IU
- Use one byte broken into four chunks - Use one byte descriptor that
of 2 bits each. Each 2 bit chunk describes layout of 8 data bytes. A “0”
encodes number of bytes used to indicates the end of an integer
describe an integer {1, 2, 3, 4} - The integer encodings follow the
- The integer encodings follow the descriptor byte
descriptor byte - Can be efficiently decoded using

SIMD “pshufb” instruction

ldea 1. Differential Coding (Space)

- For sorted arrays, first pre-process elements into deltas

- =X

- Recover original elements using prefix sum

- Compute differences in-place working from end of the array backwards toward the start

Idea 2: Utilize SIMD Operations ()

- Many modern CPUs provide SIMD operations

- SIMD operations have been used to speedup varint-G8IU by 50% (decoding) and 300%
(encoding) previously

- Use SIMD operations for encoding/decoding process AND prefix-sum

Idea 2: Utilize SIMD Operations ()

- In particular, partition array into consecutive blocks of 4 elements each, take element-
wise differences between blocks.

- This increases speed from 2 billion integers per second to 5 billion integers per second.

- Causes differences to be, on average, four times larger (costs 2 bits of storage)

ldea 3: Break large arrays into small arrays
during processing |)

For arrays with more than 256 KB worth of data, break them into 256 KB chunks and
process them independently.

Improves cache efficiency by reducing the number of cache misses

ldea 4. Bit packing (Space)

struct Fields4.8 {
unsigned Intl:
unsigned Int2:
unsigned Int3:
unsigned Int4:
unsigned Int5:
unsigned Int6:
unsigned IRET
unsigned Int8:

BSOS D D DD DS DS
Ne Ne Ne o Ne Ne Ne Ne N

INt8|Int7|Int6 Int5 Int4 Int3 Int2 Intl unused '

3128 24 2 16 12 8 4 0 31
(a) 4-bit integers

Int24 Int 20 Int16/Int12 Int8 Int4 Int23 Int 19 Int 15 Int11 Int7 Int3

30 25 20 15 10 25 20 15 10
Int 28 Int 27

unused unused

struct Fields5.8 {

Int 8

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

unsigned

<« Int7

30

Intl:
Int2:
Int3:
Int4:
Int5s
Int6:
Int7:
Int8:

Int 6
25

[S2NCE; IC, I, I C, E, N E)|

Ne N+ Ne o Ne N Ne Ne N

Int 5

20

(b) 5-bit integers

Int22 Int 18 Int14 Int10 Int6 Int2

25

20 15
Int 26

unused

10

30

Int4 | Int3

15 10

Int2 | Int 1

Int 21 Int 17 Int 13 Int9

25

20 15
Int 25

unused

10

Int5 Int 1

0

Terminology

- Page: Group of thousands/millions of integers
- Block: Group of 128 integers

In particular, an array of integers comprises many pages, and each page comprises many
blocks.

ldea 6: Store Exceptions at the page level (Space)
ldea 7: Choose different bit widths for each block (Space)

- An exception is an unusually large integer within a block

- The bit width of a block is chosen to match the “typical” integer bit width within the
block. Any integers that exceed this bit width are stored as an exception.

Example

Can choose b = 6 bits, but would like b to be smaller
Heuristic of cost for each exception: 8 + (6 -b)=14-b

Choose b to minimize 128*b + (14 - b) * ¢ (in this example, replace 128 with 16)
Here, choose b = 2 to minimize cost

10,10, 1,10, 100110, 10,1,11, 10, 100000, 10, 110100, 10, 11, 11,1

10,10,1,10,10,10,1,11, 10, 00, 10, 00, 10, 11, 11, 1.

Example

- Compressed page starts with 32 bit integer describing the total size of the truncated
sequence

- Skip the truncated sequence to reach the byte array

- Byte array contains b, maximal bit width, number of exceptions, locations of exceptions,
all using one byte each.

- Exceptions follow the byte array and are further compressed

- SimplePFOR compresses using Simple-8b
- FastPFOR has 32 arrays, one for each possible exception bit-width

- Exceptions are the first component decoded and are decoded in bulk

Data to be compressed: ... 10, 10, 1, 10, 100110, 10, 1, 11, 10, 100000, 10, 110100, 10, 11, 11, 1...

Truncate a:
(16 x 2 = 32 bits) ... 10, 10, 01, 10, 10, 10, 01, 11, 10, 00, 10, 00, 10, 11, 11,01 ...

Byte array:
(6 x 8 = 48 bits) ...2,6,3,4,9, 11 ...

Exception data:
(to be compressed) ... 1001, 1000, 1101 ...

Experiments

“Linux server equipped with Intel Core i7 2600 (3.40 GHz, 8192 KB of L3 CPU cache)
and 16 GB of RAM. The DDR3-1333 RAM with dual channel has a transfer rate of
20,000 MB/s or 5300 mis.”

packing —# packing —#
packing without mask —#— packing without mask —#—
unpacking —@— b unpacking —@—
5 H unpacking (hori.) —w—

PTG T\ T g ,‘m“‘f

0
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
bit width bit width
(a) Optimized but portable C++ (b) Vectorized with SSE2 instructions

Experiments

- Test on ClusterData and Uniform model synthetic datasets

- Test on real datasets: ClueWeb09 (Category B) data set and GOV2 data set

- Test against other state-of-the art algorithms like PFOR and varint-G8IU

- End up with the fastest coding and decoding speeds, with competitive compression
ratios

- SIMD-BP128 works very well across test cases

Experiments

o
o

varint-G8lu —— varint-G8IU —+—
SIMD-FastPFOR —#— SIMD-FastPFOR ——
SIMD-FastPFOR* —@— SIMD-FastPFOR* —@—
SIMD-BP128 —&— SIMD-BP128 —&—
SIMD-BP128* —w—
Simple-8b ——
OptPFD —%—

varint-G8lu —+— varint-G8IU
SIMD-FastPFOR — SIMD-FastPFOR
SIMD-FastPFOR* —@- SIMD-FastPFOR*
SIMD-BP128 —&— SIMD-BP128
SIMD-BP128* —¥— SIMD-BP128*
Simple-8b —&— Simple-8b
OptPFD —%— OptPFD

0

o
w
0

«
«

F ol
[
o
«n

IS
IS

w
w
N w
NDw b

N
n
size (Shannon = 1)

size (Shannon = 1)

e
[N

16 18 20
array length (log) array length (log)

(e) Size: GOV2 (bits/int) (f) Size: GOV2 (relative to entropy)

14 16 18 20 22
array length (log) array length (log)

(a) Size: ClueWeb09 (bits/int)) Size: ClueWeb09 (relative to entropy)

varint-G8IU —+— SIMD-BP128* —v%— varint-G8lU —+— SIMD-BP128* —¥%—
SIMD-FastPFOR —M— __sSimple-8p—9— SIMD-FastPFOR —— Simple-8b —#—
SIMD-FastPROR+ 87 OptPFD —— SIMD-FastPFOR* —@
S SIMD-BP128 —A—

v

varint-G8lU —+— SIMD-BP128* —w— varint-G8lU —+— SIMD-BP128* —w—
SIMD-FastPFOR SIMD-FastPFOR — Simple-8b _
—X— SIMD-FastPFOR* —@— O
SIM,D,-BWﬁ

N
5]
S
S

[
o N B
S o o
S & o

g

@
<3
=3
2R NN
o o o u
S © o o
S © & ©

I3
S
S

o
g
decoding speed (mis)

encoding speed (mis)
5
5
decoding speed (mis)
5 &
s 8
encoding speed (mis)

w
S
S

SIS

[SEE=)

S oS

v
o
S

o

18 20
array length (log) array length (log)

) Encoding: ClueWeb0 (d) Decoding: ClueWeb

array length (log) array length (log)
Encoding: GOV2) Decoding: GOV2

Evaluation of paper and comparison to previous
WOrk

- Strong speed increase over previous methods

- Utilizes binary packing and vectorizes it (not done previously, at least not nearly as
effectively)

- Strength: Comprehensive analysis, many other compression schemes are introduced
and the authors did extensive testing to compare their ideas to previous work

- Strength: Good examples.

- Weakness: Many acronyms to keep track of, and many variants of the compression
schemes. This makes it harder (at least for me) to develop general “take away” ideas
from the paper.

- Future work: data-based adaptive compression schemes, and probabilistic analysis of
the algorithms proposed here

