
Decoding billions of integers per
second through vectorization

Paper by D. Lemire and L. Boytsov
Presentation by Xander Morgan

Problem Statement: Optimize Space and Speed

- We would like to encode and decode large arrays of integers efficiently in terms of
space and time, i.e., achieve good compression and high rate of processing

- Focus on 32-bit integer sequences, often sorted

- Main memory, rather than disk, often limits computation speed in modern algorithms

- Applications in search engines and relational databases

Aside to illustrate compression ideas
(Space optimization is a solved problem)

Suppose we have a 4-sided die. The probabilities of the sides are listed below. We would like
to roll this die many times and communicate results to a friend using a sequence of bits. How
to efficiently do this?

Side Probability

0 1/4

1 1/4

2 1/4

3 1/4

Aside to illustrate compression ideas
(Space optimization is a solved problem)

Suppose we have a 4-sided die. The probabilities of the sides are listed below. We would like
to roll this die many times and communicate results to a friend using a sequence of bits. How
to efficiently do this?

Side Probability Bit representation

0 1/4 00

1 1/4 01

2 1/4 10

3 1/4 11

Aside to illustrate compression ideas
(Space optimization is a solved problem)

Suppose we have a 4-sided die. The probabilities of the sides are listed below. We would like
to roll this die many times and communicate results to a friend using a sequence of bits. How
to efficiently do this?

Side Probability

0 1/2

1 1/4

2 1/8

3 1/8

Aside to illustrate compression ideas
(Space optimization is a solved problem)

Suppose we have a 4-sided die. The probabilities of the sides are listed below. We would like
to roll this die many times and communicate results to a friend using a sequence of bits. How
to efficiently do this?

Side Probability Bit representation

0 1/2 0

1 1/4 10

2 1/8 110

3 1/8 111

Aside to illustrate compression ideas
(Space optimization is a solved problem)

- Given a probability distribution pX(⋅) over a set {x1, …, xn}, the average number of bits
required to encode i.i.d. symbols from this distribution is at least

- Furthermore, there are coding algorithms that can (with some nuance) achieve this
bound

Binary and Unary

Binary:

1 -> 1

2 -> 10

3 -> 11

Unary:

1 -> 1

2 -> 01

3 -> 001

Elias gamma and delta coding

- Elias gamma: encode number of bits in unary, followed by binary representation of the
number (without the MSB)

- Elias delta: encode number of bits using Elias gamma, followed by binary representation
of the number (without the MSB)

Variable byte encoding

- Break integer into 7 bit chunks. Each 7 bit chunk is stored in a byte, with 0 as the 8th bit
denoting “continue” and 1 denoting “end”

- E.g., 11001000 gets encoded as 10000001 01001000

Varint-GB and Varint-G8IU

Varint-GB

- Use one byte broken into four chunks
of 2 bits each. Each 2 bit chunk
encodes number of bytes used to
describe an integer {1, 2, 3, 4}

- The integer encodings follow the
descriptor byte

Varint-G8IU

- Use one byte descriptor that
describes layout of 8 data bytes. A “0”
indicates the end of an integer

- The integer encodings follow the
descriptor byte

- Can be efficiently decoded using
SIMD “pshufb” instruction

Idea 1: Differential Coding (Space)

- For sorted arrays, first pre-process elements into deltas

- ẟj = xj - xj - 1

- Recover original elements using prefix sum

- Compute differences in-place working from end of the array backwards toward the start

Idea 2: Utilize SIMD Operations (Speed)

- Many modern CPUs provide SIMD operations

- SIMD operations have been used to speedup varint-G8IU by 50% (decoding) and 300%
(encoding) previously

- Use SIMD operations for encoding/decoding process AND prefix-sum

Idea 2: Utilize SIMD Operations (Speed)

- In particular, partition array into consecutive blocks of 4 elements each, take element-
wise differences between blocks.

- This increases speed from 2 billion integers per second to 5 billion integers per second.

- Causes differences to be, on average, four times larger (costs 2 bits of storage)

Idea 3: Break large arrays into small arrays
during processing (Speed)

- For arrays with more than 256 KB worth of data, break them into 256 KB chunks and
process them independently.

- Improves cache efficiency by reducing the number of cache misses

Idea 4: Bit packing (Space)

Terminology

- Page: Group of thousands/millions of integers
- Block: Group of 128 integers

In particular, an array of integers comprises many pages, and each page comprises many
blocks.

Idea 6: Store Exceptions at the page level (Space)
Idea 7: Choose different bit widths for each block (Space)

- An exception is an unusually large integer within a block

- The bit width of a block is chosen to match the “typical” integer bit width within the
block. Any integers that exceed this bit width are stored as an exception.

Example

- Can choose b = 6 bits, but would like b to be smaller
- Heuristic of cost for each exception: 8 + (6 - b) = 14 - b
- Choose b to minimize 128*b + (14 - b) * c (in this example, replace 128 with 16)
- Here, choose b = 2 to minimize cost

Example

- Compressed page starts with 32 bit integer describing the total size of the truncated
sequence

- Skip the truncated sequence to reach the byte array
- Byte array contains b, maximal bit width, number of exceptions, locations of exceptions,

all using one byte each.
- Exceptions follow the byte array and are further compressed

- SimplePFOR compresses using Simple-8b
- FastPFOR has 32 arrays, one for each possible exception bit-width

- Exceptions are the first component decoded and are decoded in bulk

Experiments

- “Linux server equipped with Intel Core i7 2600 (3.40 GHz, 8192 KB of L3 CPU cache)
and 16 GB of RAM. The DDR3-1333 RAM with dual channel has a transfer rate of
20,000 MB/s or 5300 mis.”

Experiments

- Test on ClusterData and Uniform model synthetic datasets
- Test on real datasets: ClueWeb09 (Category B) data set and GOV2 data set
- Test against other state-of-the art algorithms like PFOR and varint-G8IU
- End up with the fastest coding and decoding speeds, with competitive compression

ratios
- SIMD-BP128 works very well across test cases

Experiments

Evaluation of paper and comparison to previous
work

- Strong speed increase over previous methods
- Utilizes binary packing and vectorizes it (not done previously, at least not nearly as

effectively)
- Strength: Comprehensive analysis, many other compression schemes are introduced

and the authors did extensive testing to compare their ideas to previous work
- Strength: Good examples.
- Weakness: Many acronyms to keep track of, and many variants of the compression

schemes. This makes it harder (at least for me) to develop general “take away” ideas
from the paper.

- Future work: data-based adaptive compression schemes, and probabilistic analysis of
the algorithms proposed here

