
A New Parallel Algorithm for Connected
Components in Dynamic Graphs (2013)

By: Robert McColl, Oded Green, David A. Bader

Presented by Ian Gatlin

1

What is a Dynamic Graph Algorithm?

Dynamic Graph - Ordered series of discrete static graphs. There are a lot of
applications where updates to a graph are happening quickly. For example, you
could imagine on Facebook there are thousands of friendship updates every
minute.

Dynamic Graph Algorithm - Theoretically is able to find insights from graphs such
as spanning trees, shortest paths, and connected components by using updates
to the graph rather recomputing with traditional static graph algorithms.

2

What Does This Paper Address?

- Their proposed data structure allows us to keep track of connected
components with a dynamic graph algorithm

- Runs up to 128x faster than static algorithms
- Achieves 14x parallel speedup
- Takes O(V) space

Why is this important?

- Connected components is a well studied graph problem with applications in
social media networks, 3-d image processing, and recommendation systems

3

Two Cases

Adding an edge -> just check the component membership of each of the edge’s
two vertices.

- If vertices are in the same component then we do nothing, if they are different,
combine them into the same component

Deleting an edge -> more complicated, naively takes O(V+E) to run a BFS or
DFS on the edges in that component to determine connectivity and potentially
relabel new connected components. This is too slow for dynamic graph usage.

4

Main Idea

Can we find a way that determines if an edge deletion doesn’t break up a
connected component (is “safe”) with 100% true positive rate and in constant
time?

False negatives (marked unsafe when safe) will be handled with our naive
solution. We need to minimize these.

If we can find a way to store in our data structure alternative paths between
vertices in a component in linear space (O(V)), we can determine if a path is safe
by looking at those alternative paths while also being space and time efficient.

5

Overall: O(V)

Parents-Neighbors Sub-graph Data Structure
Constant

6

- This turns our undirected graph into a directed
graph representation, therefore, we need to apply
transformations for prospective edge {s, d} as
both <s, d> and <d, s>

Initialization

A

B DC

E

Start parallel
Full-BFS

∀ vertices @ start

Thresh_pn => 2

Q_index 0 1 2 3 4 5 6 7

Label

Queue

C (Label) -

Size -

Level ∞

Count 0

PN []

H G

F

Undiscovered Potential to change Finished

7

Initialization

C (Label) A

Size -

Level 0

Count 0

PN []

A

Q_index 0 1 2 3 4 5 6 7

Label start stop, end

Queue A

H G

F

B

A

B DC

E

Undiscovered Potential to change Finished

Thresh_pn => 2

8

Initialization
A B, C, D

Q_index 0 1 2 3 4 5 6 7

Label start stop end

Queue A B C D

C (Label) A

Size -

Level 0

Count 0

PN []

C (Label) A

Size -

Level 1

Count 1

PN [A]

B

H G

F

A

B DC

E

Undiscovered Potential to change Finished

Thresh_pn => 2

9

Initialization

A

B DC

E

B E

Q_index 0 1 2 3 4 5 6 7

Label start stop end

Queue A B C D E

C (Label) A

Size -

Level 1

Count 2

PN [A, -C]

C (Label) A

Size -

Level 1

Count 2

PN [A, -B]

C (Label) A

Size -

Level 2

Count 2

PN [C, D]

C

H G

F

Undiscovered Potential to change Finished

Thresh_pn => 2

10

Initialization

A

B DC

E

B E

Q_index 0 1 2 3 4 5 6 7

Label start stop, end

Queue A B C D E

C (Label) A

Size -

Level 1

Count 2

PN [A, -C]

C (Label) A

Size -

Level 1

Count 2

PN [A, -B]

C (Label) A

Size -

Level 2

Count 2

PN [C, D]

C

H G

F

Undiscovered Potential to change Finished

Thresh_pn => 2

11

Initialization

A

B DC

E

Q_index 0 1 2 3 4 5 6 7

Label start, stop, end

Queue A B C D E

H G

F

C (Label) A

Size 5

Level 0

Count 0

PN []

A

Undiscovered Potential to change Finished

Thresh_pn => 2

12

Initialization

A

B DC

E

Q_index 0 1 2 3 4 5 6 7

Label start stop, end

Queue F

H G

F

C (Label) F

Size -

Level 0

Count 0

PN []

F

Undiscovered Potential to change Finished

Thresh_pn => 2

13

Initialization

A

B DC

E

Q_index 0 1 2 3 4 5 6 7

Label start stop end

Queue F H G

H G

F

Undiscovered Potential to change Finished

F H, G
C (Label) F

Size -

Level 0

Count 0

PN []

C (Label) F

Size -

Level 1

Count 1

PN [F]

Thresh_pn => 2

14

Initialization

A

B DC

E

H G

F

Undiscovered Potential to change Finished

H G
C (Label) F

Size -

Level 1

Count 2

PN [F, -G]

C (Label) F

Size -

Level 1

Count 2

PN [F, -H]

Q_index 0 1 2 3 4 5 6 7

Label start stop, end

Queue F H G

Thresh_pn => 2

15

Initialization

A

B DC

E

H G

F

Undiscovered Potential to change Finished

Q_index 0 1 2 3 4 5 6 7

Label start, stop, end

Queue F H G

C (Label) F

Size 3

Level 0

Count 0

PN []

F

Thresh_pn => 2

16

Additional Notes about Initialization Algorithm

- If length of array PN_d (count) == thresh_pn, then the potential parent or
neighbor is simply not added to the array

- Because of the BFS traversal order, parents will always be put into array
before neighbors. Parents are more important than neighbors

- Each frontier is searched in parallel

17

Adding Edges

- Done as a batch
- Edges within a component are processed in parallel, edges across

components are processed sequentially after intra-component edges are
finished.

18

Adding “Safe” Edges Within
Component

A

B DC

E

19

Edge <B, E>

- Try to create parent relationship in
PN_E no matter what

- (replace a neighbor relationship)
- If there is space in PN_E, add a

neighbor relationship

C (Label) A

Size -

Level 2

Count 3

PN [C, D, B]

E
C (Label) A

Size -

Level 2

Count 2

PN [C, D]

E

Edge <A, B>

- If parent relationship possible, then
add and set level of destination to
positive level of neighbors

- Level becomes an approximation

Adding “Unsafe” Edges
Within Component

A

B

DC

E

20

C (Label) A

Size -

Level 2

Count 2

PN [-E, A]

B
C (Label) A

Size -

Level -2

Count 1

PN [-E]

B

Edge <B, G>

- Rerun’s parallel BFS from initialization
on smaller component

- If component size = 1, then manually
update state of that vertex

Adding Edges Across
Components

21

C (Label) A

Size -

Level 3

Count 2

PN [G, -H/-F]

F/H
C (Label) A

Size -

Level 2

Count 1

PN [B]

G

A

B DC

E

H G

F

Start parallel BFS into its
previous component’s

members

Deleting Edges

- Also done as a batch
- Delete all batched edges and update PN and Level in parallel, and then check

“safety” of points by looking at each PN array of vertices that had deletions
- Safe deletions can be processed with no extra restructuring of data

22

Detecting “Unsafe” Edge Deletion

23

If a parent
exists in

destination
PN

Safe
deletion

Swap level
to -level

Check if
neighbors have

valid path
(positive level)

Safe
deletion

Unsafe
deletion

To Resolve an Unsafe Deletion

24

Run BFS from destination
vertex

Treat this as initialization BFS
for new component

If BFS finds previous component, relabel
previously lost vertices with second BFS
starting from frontier with found vertex

If original component is not found, then this
new labeling is a new component

Experimental Methodology

- Used synthetic graphs with:
- Skewed degree distribution
- Power law
- Few large components
- Many small components

- Graphs used had scale S and edge factor E
- |V| = 2^S
- |E| = E * 2^S.
- E corresponds to the average degree.

- 10 batches with 100K updates are used

25

Failed Experiments

- Finding two-hop connecting paths with adjacency list intersection
- 750 unsafe deletes = full static recompute

- Maintaining spanning trees for each component
- Lots of recomputation if tree edge was deleted. 90% of deletions were

safe
- Maintaining two spanning trees in each component

- 99.7% of deletions were safe, and computationally challenging
- Path between vertices with BFS

- Because of power law, frontier get very large quickly

26

Quantitative Results

27

Quantitative Results

28

Performance Results

29

Colors just represent 3
different graphs of same

properties tested on

Pros

- Algorithm is simple and concise, easily implementable
- Thresh_pn value for achieving constant size is effective
- Tested on graphs with properties on which they would be useful

30

Cons
- Figures and explanation could have been more clear
- Would be nice to compare unsafe deletion rate to failed experiments
- Need testing on larger graphs (2^24 ~ 16 million)

Thank you! Questions

31

Appendix

32

Appendix

33

