4
N

Work-Efficient Parallel Union-Find

By Simsiri, Tangwongsan, Tirthapura, Wu

Reviewed by Kasra Mazaheri



The Problem

e Incremental Graph Connectivity (IGC) or the Union-Find Problem:
A problem where the goal is to determine if two vertices in a graph are
connected, with the graph dynamically growing as edges are added.

e Challenge: Traditional sequential solutions don't scale for large,
rapidly-changing graphs typical in many real-world applications,
necessitating a parallel solution.

e Real-World Applications: Parallel Union-Find algorithms are crucial
in social network analysis for identifying communities, in network
connectivity for understanding the robustness of the internet infrastructure,
and in clustering algorithms for data analysis
across diverse datasets.



Related Work and State of the World

e Sequential Union-Find: The sequential case has been thoroughly been studied, with
Tarjan’s algorithm [5] having been shown optimal (O(«(m,n)) per find).
o These algorithms cannot exploit parallelism however.

e Memory-Constrained Union-Find: Demetrescu et al. present a multipass
memory-constrained union-find.

e Fully Dynamic Parallel IGC: McColletal [11] solve the fully dynamic IGC, but with no
theoretical bounds.

e Distributed-Memory Parallel Union-Find: Manne and Patwary [12]

e Other Batched Parallel Union-Find: Shiloach and Vishkin [17]



Definitions and Preliminaries

e The Minibatch Streaming Model: Input is streamed in mini batches of
varying size, with each minibatch only containing union operations or finds.
Mini batches are received sequentially, but each minibatch can itself be
solved in parallel.

e CRCW PEM Model: Threads are assumed to have the concurrent-read
concurrent-write model of shared memory. The algorithm can work in
EREW with an extra logarithmic factor, because of parallel integer sort.

n: The total number of vertices.

m: The total number of edges.

g: The total number of queries.

b: The number of queries within a minibatch.



Contributions

1. Simple Parallel Algorithm

a. Bulk-Union
b. Bulk-Same-Set

2. Work-Efficient Parallel Algorithm

3. Implementation and Evaluation



The Simple Parallel Union-Find

The basic idea is Union-Find with size comparison.

1. Bulk-Same-Set: In parallel answer all queries by comparing the result of
finds.

o The parallel depth: O(log n)
o The total work: O(q log n)

2. Bulk-Union: A bit more complicated.



Bulk-Union:

1. Relabel queries to component supernodes, i.e., the identifier.
2. Remove self-loops with supernodes.
3. Add the new edges between supernodes to create some connected

components (CC).
4. For each CC, unite the supernodes using Parallel-Join.

Algorithm 3: Parallel-Join(U,C)

Input: U: the union-find structure, C: a seq. of tree roots

Output: The root of the tree after all of C are connected

if |C| == 1 then

| return C[1]

else
¢t —|Cl/2]
u «— Parallel-Join(U,CJ1,2,...,/]) in parallel with

v « Parallel-Join(U,C[{+ 1,£+ 2,...,|C]])

return U.union(u,v)

Ao

4




Bulk-Union: Work and Depth Analysis

W=

Relabeling: O(b log n) work and O(log n) depth.

Filtering self-loops: O(b) work and O(log b) depth.

Create the supernode connected components (CC):

O(b) work and O(log max(b,n)) depth using Gazit’s algorithm [16].
Parallel-Join each component: O(b) work and O(log n) depth.

Algorithm 3: Parallel-Join(U,C)

Input: U: the union-find structure, C: a seq. of tree roots

Output: The root of the tree after all of C are connected

if |C| == 1 then

| return C[1]

else
¢t —|Cl/2]
u — Parallel-Join(U,(C]1,2,..., (]) in parallel with

v « Parallel-Join(U,C[{+ 1,£+ 2,...,|C]])

return U.union(u,v)

Ao

4




The Simple Parallel Union-Find

The basic idea is Union-Find with size comparison.

1. Bulk-Same-Set: In parallel answer all queries by comparing the result of
finds.
o The parallel depth: O(log n)
o The total work: O(q log n)

2. Bulk-Union: A bit more complicated.
o The parallel depth: O(log max(n, b))
o The parallel work: O(b log n)



The Work-Efficient Parallel Union-Find

The basic idea is Union-Find with size comparison, with path compression.

1. Bulk-Same-Set: A bit complicated.

2. Bulk-Union: Same as the simple union-find algorithm.



Bulk-Find:

The general idea as an example.

A: An example union-find tree with sample queries circled.

B: bolded edges are paths, together with their stopping points that result from the traversal in Phase I.

C: the traversal graph RU recorded as a result of Phase I.

D: the union-find tree after Phase Il, which updates all traversed nodes to point to their roots

(A) 19
" / ~

15
9

16 17 18 19
2
8 N
8 10

o 4\,

(B)

/(19\

16 17 18 19
2
5
N\
$& Lo
o)
11

(C)

(D)

14

/6

12



Bulk-Find:

Phase I:
e Find the roots of all queries, coalescing flows as they meet, through what's
effectively a parallel BFS.
e Record the traversed paths to distribute query responses in Phase Il.

Phase Il:
e Distribute responses through a backwards BFS from all reached roots.
e Compress the traversed paths as the backwards BFS is run.



Bulk-Find:

The algorithm in greater
detail, albeit unreadable:

Algorithm 4: Bulk-Find(U, §)—find the root in U for each s € S with path compression.

Input: U is the union find structure. For i = 1,...,|S|, S[i] is a vertex in the graph
Output: A response array res of length |S| where res[i] is the root of the tree of the vertex
S[i] in the input.
> Phase I: Find the roots for all queries
Ro < {(S[k],null) : k=0,1,2,...,|S|—1)
Fy < mkFrontier(Ry, &), roots « &, visited < 5,1 « 0
while R; # ¢J do
visited < visited U F; def mkFrontier(R, visited):
Rii1 « {(parent[v],v) : v € F; and parent[v] # vy | //nodes togo to next
roots « roots U {v : v € F; where parent[v] = v} leg S50 AnRls B e
p . S not visited[v])
Fii1 < mkFrontier(R;;1, visited), i «— i+ 1 2: return removeDup(req)
> Set up response distribution
8. Create an instance of RD with R, = Rgy® R, ® - - ®R;
> Phase lI: Distribute the answers and shorten the paths
9: Dy <« {(r,r) : reroots}, i < 0
10: while D,‘ — @ do
i For each (v, r) € D;, in parallel, parent|[v] < r
12: Dii1 — U pep, {(u.r) : ue RD.allFrom(v) and u # null}. That is, create Dj1 by
expanding every (v, r) € D; as the entries of RD.allFrom(v) excluding null, each
inheriting r.
13: i—i+1
14: Fori =0,1,2...,|S| — 1, in parallel, make res[i] < parent[S][i]]
15: return res

NI @ R N




Bulk-Find:

Phase I:
e Find the roots of all queries, coalescing flows as they meet, through what's
effectively a parallel BFS.
e Record the traversed paths to distribute query responses in Phase Il.

Phase ll:
e Distribute responses through a backwards BFS from all reached roots.
e Compress the traversed paths as the backwards BFS is run.

Technical Note: Phase | records the traversed edges as a list of edges, while the
backwards BFS in Phase Il requires adjacency lists to perform optimally. The
authors therefore design a data structure using hashing and Parallel Integer Sort
to perform this conversion efficiently.



The Work-Efficient Parallel Union-Find

Work Analysis:

The authors use the following powerful lemma to prove the work-efficiency of
the Parallel Union-Find algorithm:

Lemma (11): For a sequence of queries S with which Bulk-Find(U, S) is invoked,
there is a sequence S' that is a permutation of S such that applying U.find to S'
serially in that order yields the same union-find forest as Bulk-Find's and incurs
the same traversal cost of O(|RU|), where RU is as defined in the Bulk-Find
algorithm.



A Practical Implementation

The authors used the Simple Parallel Union-Find algorithm as the base algorithm,
with the following modifications:

1.

Path Compression: Parallel-Find operations independently find the root of their trees,
and then after finding the root, they make a second iteration on the path to compress
it.

Parallel Connected Components: The Bulk-Union operation uses a parallel CC
algorithm that while work-efficient, assumes random-access to a node’s neighbors
which in practice can be costly. The authors therefore use an algorithm by Blelloch
et al. [12] with worse theoretical bounds that works directly with a list of edges.



Experimental Setup

The authors used the Simple Parallel Union-Find algorithm as the base algorithm,
with the following modifications:

1. Environment: An Amazon EC2 instance with 20 cores and 2-way hyperthreading.
2. Parallel Scheduling: Intel Cilk’s work-stealing scheduler built in Clang 3.4.
3. Datasets: A collection of synthetic graphs, including power-law-type graphs and
more “regular” ones. These are similar to the graphs used by McColl et al.
They also use graphs with varying rates of growing connectivity.
4. Baseline: The Sequential Union-Find algorithm, since most other work do not solve

the same problem, notably with McColl et al.'s work solving the fully dynamic IGC
problem.



Experimental Setup

On varying rates of growing connectivity:

---------- random --=- local5 == rMat5
5 ==+ 3Dgrid -=- local16 - - rMat16
101 F T T T T
TABLE1 Characteristics of the graph streams used in our experiments,
showing for every dataset, the total number of nodes (n), the total
number of edges (m), and a brief description 108 R e T —— N
Graph  #Vertices #Edges Notes L\, o e TR mme—_ e :
6 I . "u.\.'.N ™ . _.
3Dgrid  99.9M 300M  3-dmesh 107 ¢ N B e s
3 N ~..,_‘~' S~ 1
random 100M 500M 5 randomly-chosen neighbors per node ; N S e
41 ~ "‘"’tq, 4 ., S
local5 100M 500M small separators, avg. degree 5 10 _ B ‘m.% 00
locall6  100M 1.6B small separators, avg. degree 16 N Y '\.\,‘ X :
rMat5  134M 500M  power-law graph using rMat23 10 b . "'\.,:‘.‘ E
rMat1lé 134M 1.6B adenser rMat graph . - . t’s..',e
10 -

0 20% 40% 60% 80% 100%



Results

Sequential Benchmarking:

When run sequentially, the
Practical Parallel Union-Find is
within 2.2-4.3x of the optimal
work-efficient algorithm's
performance, exhibiting a

reasonably good performance.

TABLE2 Runningtimes (in seconds) on 1 thread of the baseline
union-find implementation (UF) with and without path compression
and the bulk-parallel version as the batch size is varied

Graph UF UF Bulk-Parallel using batch size
(nop.c) (p.c) 500K M 5M 10M

random  44.63 1842 6543 66.57 75.20 77.89
3Dgrid  30.26 14.37 61.10 62.00 71.74 75.07
local5 44.94 18.51 65.84 66.77 7538 78.23
locall6 15440  46.12 11434 108.92 11480 117.55
rMat5 33.39 1847  66.98 68.48 74.97 78.69
rMatl6 81.74 3529 8327 76.64 76.03 77.62



Results

Parallel Benchmarking:

When run parallely, the Practical Parallel Union-Find exhibits 8-11x speedups for a batch
size of T0M.

TABLE3 Average throughput (in million edges/second) and speedup of Bulk -Union for different batch sizes b, where T4
is throughput on 1 thread and T, is the throughput on 20 cores

Graph Using b = 500K Usingb = 1M Usingb = 5M Usingb = 10M
T Tooe  Taoc/Ti T Tooe Taoc/Ti T T20c Tooc/Ti Ty T20c T20c/Th

random 7.64 3687 4.8x 7.51 46.02 6.1x 6.65 60.66 9.1x 642 63.90 10.0x
3Dgrid 4.91 2975 B5:7X 4.83 34.97 7.2x 4.18 4427 10.6x 3.99 4524 11.3x
local5 7.59 3841 5.1x 7.49 48.32 6.5x 6.64 64.61 9.7x 6.39 64.09 10.0x
locallé 13.99 7883 5.6x 14.69 9557 6.5x 1394 12269 88x 13.61 12203 90x
rMat5 7.47 2608 3.5x .30 34.19 4.7x 6.67 49.92 7.5x 6.35 5037 7.9%
rMatlé 19.21 5494 2.9x 2088 78.10 3.7x 21.05 14363 6.8x 20.61 167.68 8.1x




Results

Parallel Benchmarking:

Average throughput (edges 7x10’
per seconds) for varying
number of threads in
random graphs are plotted gx107?
on the right:

6x10’

4x107
20c denotes 20 threads 3x107
with 2-way hyperthreading.
2x107
1x10’
0

batch size=10M ——e—
batch size=bM =——3—
batch size=1M —&—

16

20

20c



Future Work

e A hybrid IGC solver that can dynamically choose between a DFS and
Union-Find based approach, to optimize performance based on batch size.

o Not really practical since for all practical purposes, the inverse
Ackerman's function is constant.

e Extending the results of work-efficient Union-Find to fully dynamic IGC,
where edges deletions are allowed as well as edge additions.



Evaluation

e Strengths

o Introduces a novel, work-efficient parallel algorithm for Union-Find with significant
theoretical and practical contributions.

o Demonstrates scalability and practicality through comprehensive benchmarks and
experimental results.*

o Opens new avenues for research in parallel algorithms for dynamic graph problems.

e Weaknesses

o Lacks direct comparison with distributed systems, which could provide insights into its
relative performance.

o Does not fully address the challenges of graph dynamics that include edge deletions.



