Parallel Integer Sort: Theory
and Practlce

aa

Reviewed By: Jonathan Li

Previous Integer Sorting

Previous integer sorting algorithms have a large disparity between their theoretical
and practical performance.

Generally, integer sorting has better theoretical bounds since algorithms can
use integer encoding of keys.

However, these algorithms are fairly complicated and there exist few
implementations of them.

Motivation for DovetailSort

Current parallel integer sorting algorithms use a method called MSD where
elements are distributed to buckets based off their most significant digit and then
sorted recursively.

Samplesort and semisort algorithms use sampling to determine heavy keys and
light keys, allowing duplicates to be placed in the same bucket which requires no

sorting.

DTSort combines these two ideas so that it takes advantage of duplicates while
still sorting in order.

Notation

A[1..n] Original input array with size n

[r] The range of the integer keys 0,...,r — 1

y Number of bits in a “digit” (sorted by each level)
b =2Y The “radix” size

0 Base case size threshold

n Current (recursive) problem size

d Number of remaining “digits” to be sorted

General Overview of DTSort

There are 4 steps to DTSort
Step 1: Sampling
Step 2: Distributing
Step 3: Recursing
Step 4: Dovetail Merging

DTSort Example

Step 1: Take samples (boxed), detect heavy keys, assign bucketids 1nput [6]4 0[4]8[2]6 4[7[9]11 5 15[aJ1310 9[2]14 5[9)11]6] 9
Samples: [a]x3 [2]x1[6]x2[g]x2 [7]x1
4 light buckets: for MSD (highest two bits) 00, 01, 10, 11 light light heavy EIZE] heavy light heavy light
= 3 heavy buckets: for 4, €,9 keys0-3 keys0-3 key4 key6 keys8-11 key9 keys12-15

: .. L3
Step 2: Distribute records to corresponding buckets 811101119 9 9 ¢

Stip 3: Recursively integer sort each light bucket on the next 2 bits 3| |8 101111/ €
Step 4: Merge heavy and light buckets within the same MSD IO 2”4 444455666 7”8 9999 10111]“131415]

MSD=00 MSD=01 MSD=10 MSD=11

Step 1: Sampling
We first select O(2”*y log n) samples from the original array into an array S, where
v is the number of bits in each digit from before and n is the size of the array.

S is sorted and then we subsample every (log n)-th key in S, and any output keys
which are duplicates are placed into another array S'.

Chernoff bounds state that any element in S’ has Q(n/2*y) occurrences in the input
array so these elements are now heavy keys. All other keys are light keys.

Light keys are given their corresponding MSD zone bucket id whereas each heavy
key gets its own bucket id.

Step 2: Distributing

Now that each key has a bucket id, we use stable counting sort to distribute each
key to its proper bucket.

Step 3: Recursing

Every MSD zone is sorted recursively using DTSort again, until all records in a
MSD zone are fully sorted.

This is only needed for the light buckets since heavy buckets all contain the same
key.

Due to recursion, there are multiple levels of heavy keys, with the most frequent
keys detected in the first few levels and less frequent heavy keys detected in later
levels.

Step 4: Dovetail Merging

There are 4 substeps to dovetail merging:
Step 1: Copy out light records within MSD.
Step 2: Find starting points of heavy keys.
Step 3: Move the heavy buckets to the corresponding location.

Step 4: Move the light records back into the correct locations.

Dovetail Merging Example

1 Copy out Ilght records
r=| 5a 5b I 7a ‘
B Find starting points

B Move heavy bkt 1, but initial
and final positions overlap.

EXN Flip the bucket {blue box).
EE] Flip the entire region
(blue box). bkt 1 is settled.

F1 Move heavy bkt 2 similarly.
bkt 2 is settled.

Move records in T back
All records are settled.

Light bkt0 Heavy bkt1

He bkt 2
avy,

’4 starts here

Final positions

lsalsb 7a._4ail4bi4c!4d4e_6a..6h!6c!

"6 starts here

Ll4,

4d4

6a 65 6c

Imfu_ position

- |4 /44

4.

4b 4a

v AV
4‘,4,,4 4747

64 65/ 6¢
64/6p) 6|

|

(%(4!

- 6

Te7ler] - |

////v/{/

éﬂj ;iC_L4 46_. Saéb__6a_6b 6_(2‘ 7&

DTSort Analysis

DTSort is a stable integer sort with O(n V(log r)) work and O(2*V(log r) polylog(r))
span.

Step 1: Sampling takes o(n’) work and o(polylog n’) span

Step 2: Distributing takes O(n’) work and O(r’ + log n’) span

Step 3: Recursing takes O(n V(log r)) work and O(2*(log r) V(log r))
Step 4: Merging takes O(2*y log n’) work and O(2V(log r) V(log r))

Optimization: Overflow Bucket
Records aren’t necessarily going to be as large as their size, i.e. key might be
32-bit integers but the actual range is much smaller.

When sampling, set the upper key range to be the largest value sampled. This
usually results in a lower recursion depth.

Any values which are above the new upper range are placed into an overflow
bucket which is sorted by comparison sort.

Optimization: Minimizing Data Movement
When executing the counting sort, it is not necessary to write back the bucket to
the original array A, but instead use a temporary array T.

Execution is performed on T until another distribution step or merging step is
reached in which case the results are transferred back to A.

Data is moved from T to A at the end if necessary.

Experimental Comparisons

Name Stable In-place Type Notes

DTSort Yes No Integer Our integer sort algorithm
PLIS Yes No Integer ParlayLib integer sort [9]
IPS°’Ra No Yes Integer IPS°Ra integer sort [5]

RS No Yes Integer RegionsSort [43]

RD No No Integer RADULS [36]

PLSS Y/N Y/N Comparison ParlayLib sample sort [9]
IPS'o No Yes Comparison IPS%o sample sort [5]

Integer Sorting Experimental Results

32-bit key and 32-bit value pairs 64-bit key and 64-bit value pairs
Instances Integer Comparison Integer Comparison
Ours PLIS IPS’Ra RS | PLSS IPS*o|| Ours PLIS IPS°Ra RS RD | PLSS IPS%o
Standard distributions:
10° | 500 537 671 718 | 127 690 || 994 114 109 143 186 | 1.65 111
E 107 | 501 549 600 .705| 1.14 604 || 103 115 106 171 186 | 147 105
€ 10° | 478 542 595 696 | 1.08 653 || .859 122 101 136 266 | 135 110
£ 10° | 506 505 538 613 | 805 432 || 795 141 166 154 323 101 759
10 308 707 113 438 | 959 456 581 193 378 126 825| 112 .850
| 1 526 536 574 711 .11 .671 .976 1.16 1.04 139 228 1.33 116
B2 2 502 546 577 711 | 112 661 || 919 122 105 139 245| 135 119
2 5 435 567 583 705 | 1.11 .612 819 1.52 103 141 244 | 135 1.03
8.. 7 419 582 554 .708 | 1.08 .609 .782 1.69 101 148 253 | 132 972
& 10 | 402 603 560 .682 | 1.09 561 || 763 1.87 105 153 261 | 128 930
0.6 493 543 630 .720 123 .691 1.00 1.14 111 143 1.82 1.63 1.12
= 0.8 524 542 619 710 | 1.20 .670 1.00 1.18 1.09 146 192)| 156 1.08
“2_ 1 .601 631 648 .735 1.08 .590 1.04 144 171 153 3.10 1.30 1.08
N 1.2 516 832 107 .709 | 110 .743 918 195 329 172 585 | 145 122
1.5 446 946 190 695 | 148 .939 .883 256 657 174 678 | 199 1.65

Avg. | 472 601 698 .679 | 111 629 || 882 146 149 149 292 | 139 1.07

Application Experimental Results

i Integer Comparison
nstances n | ¢ PLIS IPS2Ra RS | PLSS IPS%o
Graph transpose
L] 690M | .043 .043 sg .065| 080 .159
TW 147B | 888 942 324 105| 1.57 .891
CM 161B| .782 945 141 107 | 184 112
SD 2.04B | 110 1.29 287 134 208 123
CW 426B | 285 370 325 sg | 60.1 246
Avg. | 985 1.13 - -] 196 137
Morton order

2;_ 5L 249M | 026 028 259 024 | 028 171
3° CM 321M | .184 .178 343 .209 | 327 338
=~ OSM 2.77B | 232 239 365 sg | 273 153
& Avg. | 223 227 .687 -| 293 445
’5‘ S$S2d 1B 498 557 662 634 | 127 775
— 8S3d 1B | 512 568 .778 .611 | 1.12 .754

= L ISy
2 SSa2d 2B | 973 1.16 127 117 | 244 139
§ Ss2d’ 2B | 990 160 286 117 | 230 196
Avg. | .704 875 1.17 .854| 1.68 112

—
w

% EEE DTSort
Impact of Duplicates -
: g
Generally, as the number of duplicates, P
we see that DTSort performs better in I .'I
o<
comparison with other algorithms. 0.0
Unif Unif Exp Exp Zipf Zipf BExp BExp
10 10 10 06 15 10 300
(a)
fg‘ N DTSort
§4 Il Plain
&
£33
Oélo..
l]l‘l

Unif Unif Exp Exp Zipf Zipf BExp BExp
1010 10 06 15 10 300

(b)

Speedup and Runtime Comparison

In general, DTSort is competitive when
it comes to speedup while performing

better in running time.

2ES

Self-speedup (logscale)
- N e ®

o
[N

o
oS
-

Running time (logscale)

.:
o
—

Curs —— RS
PLIS —e— PLSS —%

—— IPS'Ra —— l?S'o%@;
/

1 2 4 8 24 48 96 96h
Number of threads (logscale)

(e)

Qurs -—+- RS -

-~

= PLIS - PL5S S
o |PS°Ra ~re= IPS'o ’,-":
S o

1 2 5 10 20 50 100 200
Input size x 10" (logscale)

(f)

Final Thoughts

Overall, a notable improvement over current integer sort algorithms and is
especially useful in cases where duplicates are expected.

Possible areas to improve:

Potentially explore changing the base cases a bit? Might not be necessarily
the best choice and there could be some tuning involved in determining it.

Dovetail merging flips seem quite complicated for just moving data, maybe
there’s a simpler alternative?

