
Parallel Integer Sort: Theory 
and Practice

By: Xiaojun Dong, Laxman Dhulipala, Yan Gu, and Yihan Sun

Reviewed By: Jonathan Li



Previous Integer Sorting

Previous integer sorting algorithms have a large disparity between their theoretical 
and practical performance.

Generally, integer sorting has better theoretical bounds since algorithms can 
use integer encoding of keys.

However, these algorithms are fairly complicated and there exist few 
implementations of them.



Motivation for DovetailSort

Current parallel integer sorting algorithms use a method called MSD where 
elements are distributed to buckets based off their most significant digit and then 
sorted recursively.

Samplesort and semisort algorithms use sampling to determine heavy keys and 
light keys, allowing duplicates to be placed in the same bucket which requires no 
sorting.

DTSort combines these two ideas so that it takes advantage of duplicates while 
still sorting in order.



Notation



General Overview of DTSort

There are 4 steps to DTSort

Step 1: Sampling

Step 2: Distributing

Step 3: Recursing

Step 4: Dovetail Merging



DTSort Example



Step 1: Sampling

We first select Θ(2^𝛾 log n) samples from the original array into an array S, where 
𝛾 is the number of bits in each digit from before and n is the size of the array.

S is sorted and then we subsample every (log n)-th key in S, and any output keys 
which are duplicates are placed into another array S’. 

Chernoff bounds state that any element in S’ has Ω(n/2^𝛾) occurrences in the input 
array so these elements are now heavy keys. All other keys are light keys.

Light keys are given their corresponding MSD zone bucket id whereas each heavy 
key gets its own bucket id.



Step 2: Distributing

Now that each key has a bucket id, we use stable counting sort to distribute each 
key to its proper bucket. 



Step 3: Recursing

Every MSD zone is sorted recursively using DTSort again, until all records in a 
MSD zone are fully sorted. 

This is only needed for the light buckets since heavy buckets all contain the same 
key. 

Due to recursion, there are multiple levels of heavy keys, with the most frequent 
keys detected in the first few levels and less frequent heavy keys detected in later 
levels.



Step 4: Dovetail Merging

There are 4 substeps to dovetail merging:

Step 1: Copy out light records within MSD.

Step 2: Find starting points of heavy keys.

Step 3: Move the heavy buckets to the corresponding location.

Step 4: Move the light records back into the correct locations.



Dovetail Merging Example



DTSort Analysis

DTSort is a stable integer sort with O(n √(log r)) work and O(2^√(log r) polylog(r)) 
span.

Step 1: Sampling takes o(n’) work and o(polylog n’) span

Step 2: Distributing takes O(n’) work and O(r’ + log n’) span

Step 3: Recursing takes O(n √(log r)) work and O(2^√(log r) √(log r)) 

Step 4: Merging takes O(2^𝛾 log n’) work and O(2^√(log r) √(log r)) 



Optimization: Overflow Bucket

Records aren’t necessarily going to be as large as their size, i.e. key might be 
32-bit integers but the actual range is much smaller.

When sampling, set the upper key range to be the largest value sampled. This 
usually results in a lower recursion depth.

Any values which are above the new upper range are placed into an overflow 
bucket which is sorted by comparison sort.



Optimization: Minimizing Data Movement

When executing the counting sort, it is not necessary to write back the bucket to 
the original array A, but instead use a temporary array T.

Execution is performed on T until another distribution step or merging step is 
reached in which case the results are transferred back to A. 

Data is moved from T to A at the end if necessary.



Experimental Comparisons



Integer Sorting Experimental Results



Application Experimental Results



Impact of Duplicates

Generally, as the number of duplicates, 
we see that DTSort performs better in 
comparison with other algorithms.



Speedup and Runtime Comparison

In general, DTSort is competitive when 
it comes to speedup while performing 
better in running time.



Final Thoughts

Overall, a notable improvement over current integer sort algorithms and is 
especially useful in cases where duplicates are expected.

Possible areas to improve:

Potentially explore changing the base cases a bit? Might not be necessarily 
the best choice and there could be some tuning involved in determining it.

Dovetail merging flips seem quite complicated for just moving data, maybe 
there’s a simpler alternative?


