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Clustering
● Group “similar” objects together, and 

separate “dissimilar” objects
● Can be applied to spatial data and graph 

data
● Applications

○ Community detection, bioinformatics, 
parallel/distributed processing, visualization, 
image segmentation, anomaly detection, 
document analysis, machine learning, etc. 



Clustering

● Very well-studied topic
○ Hundreds of textbooks on this topic

● No universally accepted definition for 
cluster quality, many metrics have been 
proposed

● At least thousands of different clustering 
algorithms



DBSCAN for Spatial Clustering

• DBSCAN (Density-Based Spatial 
Clustering of Applications with Noise)
• Ester et al. [KDD’96]

• Areas of high density form clusters
• Does not require number of clusters 

beforehand
• Detects arbitrarily shaped clusters
• Robust to noise
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SCAN for Graph Clustering

• SCAN (Structural Clustering Algorithm 
for Networks)
• Xu et al. [KDD’07]

• DBSCAN, but on graphs
• Similarity of vertices based on their 

number of shared neighbors
• “Dense” areas contain many vertices 

who have many similar neighbors
• Can identify clusters and outliers
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DBSCAN for Spatial Clustering



Problem Definition - DBSCAN
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• Parameters
• ϵ
• minPts
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• Parameters
• ϵ
• minPts=3

• Core point
• At least minPts points in ϵ-circle
• Connected if in ϵ-circle

• Border point
• Fewer than minPts points in ϵ-circle
• Contains a core point in ϵ-circle

• Noise point



Related Work

• Sequential
• de Berg et al., ISAAC’17 (Exact algorithms)
• Gan and Tao, SIGMOD’15 Best Paper Award (Approximate algorithm, 

hardness result)
• Parallel

• Xu et al., HPDM’99 (PDBSCAN, distributed R-Tree)
• Patwary et al., SC’12 (PDSDBSCAN, parallel lock-based union-find)
• Gotz et al., MLHPC’15 (HPDBSCAN, data splitting and merging)
• Song et al., SIGMOD’18 (RP-DBSCAN, random partitioning, Map-Reduce)
• Many more

• Challenges
• Lack of theoretical guarantees in parallel implementations
• High scalability but low work-efficiency
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Our Contributions

• Parallel algorithms with work matching best sequential bounds 
(work-efficient)

• Highly-optimized multicore implementations
• Comprehensive experimental study showing that our algorithms 

outperform state-of-the-art
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All of Our Algorithms are Theoretically Efficient
2D Algorithms Delaunay Triangulation Unit-spherical Emptiness 

Checking

O(n log n) expected work; 
O(log n) span with high 

probability

O(n log n) expected work; 
O(log2 n) span with high 

probability

3D Algorithm O((n log n)4/3) expected work; 
Polylogarithmic span with high probability

Any Constant 
Dimension 
Algorithm

O(n2-(2/(⌈d/2⌉+1))+δ) expected work; 
Polylogarithmic span with high probability

Approximate 
Algorithm

O(n) expected work;
O(log n) span with high probability

18
● Our work bounds match the best sequential bounds by de Berg et al. and 

Gan and Tao (work-efficient)



Experimental Results on 36 cores
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Naive Parallel Algorithm

• Points issue range queries in 
parallel 

• Parallel connected components
• Quadratic work in the worst 

case
• Worst-case linear work per point 

for range query
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Our Parallel DBSCAN Algorithm

1. Construct grid cells
2. Mark core points
3. Cell graph
4. Cluster border points
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Our Parallel DBSCAN Algorithm

1. Construct grid cells
2. Mark core points
3. Cell graph
4. Cluster border points

• First used by de Berg et al. sequentially
• Sort based on cell ID
• Insert points into parallel hash table
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1. Construct grid cells
2. Mark core points
3. Cell graph
4. Cluster border points

• Loop through points in parallel
• Check 21-cell neighborhood
• Cell with ≥ minPts points, all points are 

core

ϵ

Our Parallel DBSCAN Algorithm
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1. Construct grid cells
2. Mark core points
3. Cell graph
4. Cluster border points

• “Core cells” and “non-core cells”

Our Parallel DBSCAN Algorithm
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1. Construct grid cells
2. Mark core points
3. Cell graph
4. Cluster border points

Our Parallel DBSCAN Algorithm
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ϵ/√2
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BCP connectivity

≤ϵ

Cell with core points

Cell without core points

Core points
Non-core points

• Bichromatic closest pair (BCP)
connectivity
• Finds closest pair of points

between two cells
• Connect cells if distance ≤ ϵ
• Used by Gan-Tao sequentially

• Run connected components on 
core cells to form clusters for 
core points



1. Construct grid cells
2. Mark core points
3. Cell graph
4. Cluster border points

Our Parallel DBSCAN Algorithm
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1. Construct grid cells
2. Mark core points
3. Cell graph
4. Cluster border points

• Differences for higher-dimensional 
exact and approximate algorithms 

• Grid size is ϵ/√d instead of 
ϵ/√2

• How BCP queries are 
computed

Our Parallel DBSCAN Algorithm
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1. Construct grid cells
2. Mark core points
3. Cell graph
4. Cluster border points
• Our work bound matches the 

sequential bounds of de Berg 
et al. and Gan and Tao
• O(n log n) for 2D, subquadratic 

for d > 2, O(n) for approximate
• BCP queries dominate work

• Can implement all operations
in polylogarithmic span
• Parallel primitives: hashing, prefix 

sums, semisorting, merging, 
pointer jumping, Delaunay

Our Parallel DBSCAN Algorithm
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Optimization - Spatial Tree
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Maintain cells in 
a kd-tree

Higher dimensions



Optimization - Parallel Pruning of BCP Queries
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Optimization - Parallel Pruning of BCP Queries
• Parallel union-find keeps 

connectivity on-the-fly
• First used by Gan and 

Tao sequentially
• Prunes query if already 

connected
• Prunes query if repeated

• Order in which cells are 
processed affects 
pruning quality
• Bucket cells based on 

#points and process 
each bucket in parallel
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No Pruning - 10 queries

Connectivity query

Connectivity query 
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Pruning - 6 queries



Experimental Setup

• AWS c5.18x Large
• 2 × Intel Xeon Platinum 8124M (3.00GHz) CPUs
• 36 cores, 2-way hyperthreading
• 144 GiB RAM

• AWS r5.24x Large (only used for larger datasets)
• 2 × Intel Xeon Platinum 8175M (2.50 GHz) CPUs
• 48 cores, 2-way hyperthreading
• 768 GiB RAM
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Good Work-Efficiency and Scalability
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● 16-6102x faster than HPDBSCAN and PDSDBSCAN 
across all datasets and parameter settings



Good Speedup over State-of-art Parallel Implementation

#Data 
Points

Dimension

GeoLife 24.9 M 3

Cosmo50 321 M 3

OpenStreetMap 2770 M 2

TeraClickLog 4373 M 13
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From their paper
(same core count)

● 18-577x faster than RP-DBSCAN



Varying Parameters
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SCAN for Graph Clustering



● A pair of adjacent vertices is similar if they share many neighbors

● Original SCAN algorithm uses cosine similarity

○ for vertices u and v with neighborhoods N(·),         
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● A pair of adjacent vertices is similar if they share many neighbors

● Original SCAN algorithm uses cosine similarity

○ for vertices u and v with neighborhoods N(·),         
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● A pair of adjacent vertices is similar if they share many neighbors

● Original SCAN algorithm uses cosine similarity

○ for vertices u and v with neighborhoods N(·),         

● Other similarity functions we consider:

○ Jaccard similarity

○ Weighted cosine similarity

SCAN Definition



● User-selected parameters: μ, 𝜀
● Vertex is a core vertex if it has at least μ neighbors that are 𝜀-similar
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● Clusters: connected component of core vertices along with any other 
𝜀-similar neighbors (border vertices)

● Outliers are vertices not belonging to any cluster
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: core
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SCAN Complexity
● Work of SCAN: O(m𝛼) ≤ O(m1.5)

○ Arboricity (𝛼): a measure of graph sparsity

○ Computing similarities is the expensive part: O(m𝛼)

○ Finding clusters from similarities: O(m)

● SCAN is especially costly for dense graphs

● Furthermore, users often have to try many different parameters to 
obtain good clusters



GS-Index: precompute index to test parameters quickly

● SCAN variant GS-Index constructs index from which querying for 
clustering under arbitrary μ and 𝜀 is fast (Wen et al., VLDB 2017)

● Maintain neighbor ordering to quickly find similar neighbors
○ Vertices’ neighbor lists are sorted in decreasing order by similarity

● Maintain core ordering to quickly find core vertices 
○ For each μ, store list of vertices sorted in decreasing order by the maximum 

value of 𝜀 such that the vertex is a core vertex



GS-Index: precompute index to test parameters quickly

● Neighbor ordering: vertices’ neighbor lists sorted by similarity
● Core ordering: For each μ, vertices sorted by max 𝜀 at which vertex is a core
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GS-Index gives fast queries but is still sequential 

● Work to compute index: O((𝛼 + log n)m)
○ Cost for computing similarities and sorting

● Work to query for clusters: linear in the total sizes of clusters
○ No work done for non-𝜀-similar edges and unclustered vertices

● Queries are fast, but computing the index sequentially is slow



Our contributions
● Parallel index-based SCAN algorithm

○ Provably work-efficient with logarithmic span

● Approximate similarity computation via locality-sensitive hashing for 
even greater speedups

● Practical, optimized multicore implementations that empirically 
outperform state-of-the-art SCAN algorithms



● Finding shared neighbors is counting triangles
○ This can be done in O(𝛼m) work and O(log n) span with high probability 

using parallel hash tables
● Important to optimize similarity computation since it’s so costly

Computing similarities
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● Count each triangle once instead of three times by directing the graph 
and counting directed triangles (Latapy 2008)
○ Direct each edge from lower-degree to higher-degree endpoint

● For better cache locality, instead of using parallel hash tables, intersect 
sorted neighbor lists with parallel merge (Shun and Tangwongsan 2015)

Computing similarities

a

b c

d e f

hgj i

k



Computing neighbor and core orderings
● Use parallel comparison sort
● Additional observation: can integer sort on unweighted graphs to get 

better work bounds
○ Transform similarities monotonically into integers

■                                →

○ Reduces the log n term in the O((𝛼 + log n)m) work bound 
■ O(𝛼m) work with O(nβ) span, or 
■ O((𝛼 + log log n)m) work and O(log n) span



Querying: doubling search on index 
● Doubling search to find core vertices and 𝜀-similar edges from index 
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● Parallel connectivity on core vertices and 𝜀-similar edges
● In theory, we use a linear work and O(log n) span connected 

components algorithm
● In practice, we use a parallel union-find data structure

Querying: finding clusters
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: core



Our Work: Approximating similarities
● Similarity computation in index construction is still the computational 

bottleneck, especially on dense graphs
● Locality-sensitive hashing (LSH) approximates similarity between 

vertices
○ SimHash for cosine similarity

○ MinHash for Jaccard similarity

● LSH sample size k trades accuracy vs. running time



LSH increases speed on dense graphs
● For sample size k, further reduce the O((𝛼 + log n)m) work bound to 

○ O(km) work with O(nβ) span, or 
○ O((k + log log n)m) work and O(log n) span



LSH still maintains guarantees on resulting clusters

● We prove that if the number of samples k is sufficiently large, we 
correctly “classify” all edges as above or below 𝜀 in similarity, except 
inside a small interval around 𝜀



LSH heuristic: only LSH on high-degree vertices
● If neighborhoods are small, better to just compute exact similarities
● Solution: use LSH on pairs of high-degree vertices, and use triangle 

counting elsewhere 



Experimental Setup
● AWS machine

○ 48 cores, two-way hyperthreading (max 96 hyper-threads)

○ 192 GiB of RAM



Comparison against state-of-the-art
● ppSCAN: fastest parallel SCAN algorithm (Che et al., ICPP 2018)
● GS-Index: original (sequential) index-based SCAN algorithm 

(Wen et al., VLDB 2017)



Exact index construction: 50–151× speedup vs. GS-Index

● Even sequentially, 1.4–2.2× speedup over GS-Index
● 23–70× self-relative parallel speedup

Friendster graph: large social network 
(65M vertices, 1.8B edges)

Cochlea graph: dense, weighted 
biological graph (26K vertices, 282M 
edges)



Query time: always faster than ppSCAN

● 1.26–12,070× 
speedup 
vs. ppSCAN

● 5–32× speedup 
vs. GS-Index

Fix μ=5 and vary 𝜀 



LSH gives faster index construction with similar cluster quality

● Modularity: popular and standard clustering metric based on how 
many edges are within clusters



Conclusion

• Theoretically-efficient and practical parallel algorithms for density-
based spatial clustering (DBSCAN) and structural graph clustering 
(SCAN)

• Code publicly available
• DBSCAN: https://sites.google.com/view/yiqiuwang/dbscan 
• SCAN: https://github.com/ParAlg/gbbs/tree/master/benchmarks/SCAN/IndexBased
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https://sites.google.com/view/yiqiuwang/dbscan
https://github.com/ParAlg/gbbs/tree/master/benchmarks/SCAN/IndexBased

