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Nearest Neighbors



k-nearest neighbors problem

● the problem: given a point set P, after some initial 
preprocessing, be able to compute for any point, the 
k-nearest neighbors in P
○ optionally be able to support efficient updates

● computing nearest neighbors of points is a fundamental 
problem in computer science
○ applications in graphics, AI, and particle physics

● research currently is focused on approximate high dimension 
nearest neighbors and exact lower dimension nearest 
neighbors
○ this paper is focused on the later category



Current Algorithms



kd-tree

● The most common method for computing 
k-nearest neighbors in low dimensions in the 
kd-tree

● Each node represents a point in the point set
● The children of the node consist of all points on 

either side of the parent node in some dimension
● The subdividing dimension typically alternates 

through each of the n-dimensions

● Question: How should the split node be selected?



kd-tree complexity

● Construction:
○ At each level of the tree, the median is computed in O(n) time. As there are O(log n) 

levels, the total complexity becomes O(n log n). However on very unbalanced trees, 
this can approach O(n^2) in practice

● Insertion/Deletion:
○ Insertion and deleting is quick, involving a O(log n) binary search to find the desired 

point.
● Nearest Neighbors:

○ Nearest neighbors can also be computed in O(log n) time. The idea is to traverse 
the tree, keeping track of the intersection of the dividing hyperplane and a sphere 
centered at the search point. 



Morton ordering

● The morton curve (or Z-order curve) describes a 
space filling curve on an arbitrary dimensional 
space. 

● For a point, we take its integer coordinates in 
binary form and interleave the digits. We then 
sort the points based on this new value.

● We take advantage of the following property of 
such an ordering:
○ for any given points p and q in the ordering, 

all points in the rectangle between p and q 
lie between the points in the ordering



Morton ordering complexity

● Construction:
○ extremely quick, a simple sort can be performed in O(n log n) time worst case

● Insertion/Deletion:
○ set insertion and deletion can also be done in O(n log n)

● Nearest Neighbors:
○ we can simply scan neighboring points to find the nearest neighbors. The worst 

case complexity is still O(n) if the points are not evenly distributed, though in most 
practical cases it’s closer to O(k)



Previous Work

● Arya and Mount
○ balanced box decomp tree (variant of kd-tree with splitting rule that attempts to 

divide both space and point count). Their queries take O(k/e log n) work though 
their implementation doesn’t support updates

● Chan
○ a minimalistic Morton ordering approach that uses random offset to reduce 

adversarial inputs. Has O(n log n) preprocessing time and O(1/e log n) expected 
time per query

● Conner and Kumar
○ An improvement on Chan that provides expected O(k log k) work for queries given 

constant bound expansion



zd-tree



zd-tree

● Based on the previous two approaches we conclude that kd-trees have slow 
preprocessing but fast query times while morton ordering has fast preprocessing but 
slow query times

● The idea is to combine both approaches:
○ we construct a kd-tree with a splitting rule based on morton ordering
○ this aims to combine the advantages of both approaches
○ we call this new data structure the zd-tree

● We also have an efficient parallel batch update algorithm
● Assumptions:

○ Bounded expansion constant and bounded ratio



Assumptions

● requires that the distances between 
points are within some bounded ratio

● requires that the density of points in 
metric space doesn’t change rapidly

Bounded Expansion Constant Bounded Ratio



Data Structure

● We construct a kd-tree as follows:
○ the root note represents the entire bounding box
○ we then split the points into child nodes depending on whether their Morton value 

at bit i is a 0 or 1
○ each internal node of the tree stores the two opposite corners of the bounding box 

represented by the children, as well as the parent node
○ the leaf nodes additionally store the set of points it contains

■ every node is contained in exactly one leaf node
■ the number of nodes in the leaf is bounded by a constant 



Construction

● To construct the tree we first preprocess the input
○ shift each coordinate by a random offset. this 

will not affect the queries and will allow us to 
achieve better average complexity

● Using a comparison function by Chan, we can 
compute the Morton sort in O(n log n) work, though 
with a linear time radix sort we can do O(n^e) span. 

● Creating the tree is done with a divide and conquer 
algorithm
○ we parallel recurse on both sides of the tree, 

computing the split point with a binary search
○ even when completely unbalanced, the total 

work remains O(n log n)



Downward Search

● We first define a downward recursive algorithm for k-nearest neighbors to a point p
● Maintain a candidate set of k points that we update as we find closer points
● let r be the distance from p to the kth farthest point (r = inf if <k points)
● search vertex v only if bounding box intersects ball of radius r around p
● if node is a leaf, iterate through all points and update set if necessary

○ otherwise recurse on children, prioritizing those whose center is close to p



Upward Search

● A more efficient search that uses downward search as a subroutine
● The idea is that during a search, only a small proportion of the tree actually needs to be 

traversed
● We start at the leaf node containing p, once again maintaining a set of candidate points
● First add all the nodes in the leaf node
● Then we traverse up to the parent only if the ball around p with radius r extends outside 

the current node’s bounding box
○ when searching the parent, we also search the parent’s other children using the 

downward search algorithm





Batch-dynamic Updates

● Since all points are stored at leaf nodes, performing 
updates is extremely simple

● To insert a single point q, first locate the leaf node that 
would contain q

● If inserting q directly would increase the size of the leaf 
past the threshold, subdivide into two children and insert 
q accordingly
○ otherwise directly add q into the leaf node

● We extend to parallel batch update by recursion from the 
root, splitting up the batch along the way

● We avoid cases where the insertion would require 
rebuilding the entire tree (e.g. cases where the number of 
bits changes) by requiring a fixed bounding box for all the 
points beforehand 



Complexity Analysis



Build Time

● From the bounded ratio assumption, the bounding box has max length d_max, which 
must be divided until the space between points is at most d_min. 

● Since d_max/d_min = poly(n), d_max is halved O(log n) times so the tree has depth O(log 
n). 

● For sorting, radix sort takes O(n) as we only require O(log n) bits, proving the work bound.  



Search Time

● We apply the upward search algorithm we presented before

● For the proof, we divide into two parts: the work from searching through points in the 
leaf nodes and the work from traversing the zd-tree to find those leaves



Lemma 1

● Firstly, the log k factor arises from the O(log k) cost of each point insertion in the set
● The initial approximation is found by traversing up the tree from the starting leaf, stopping 

once we read a node with at least k descendants
○ we know the parent B’s bounding box has O(k) points by the expansion constant
○ Let r be the side length of B, then we know the desired points must be within box(p, r)
○ If we expand the box twice, the resulting box Q must contain all the desired points 

and by expansion ratio, we still encompass O(k) points as desired. 



Lemma 2

● let B be the search area box defined in the 
previous lemma

● The largest cut of B, divides it into 2^d boxes, 
which each adds at most O(k) cost from traversing 
their leaf nodes

● Thus it suffices to show that the expected max 
distance between two leaf nodes in B is O(1)



Lemma 2 cont.

● Suppose without loss of generality, the search space is a box with side length 2^h. 
● The probability that it’s contained within a search box of side length 2^(h+j) is precisely 

((2^j-1)/2^j)^d due to random offsets
● This the the probability that the length between two leaf nodes is j
● Therefore the expectation of the length is 

● and the result follows.



Experiments



Results

● tests against other state-of-the-art implementations were done on a 72-core machine



Conclusion

● Strengths
○ based on empirical results, the algorithm scales well with large datasets, both in 

build time and query execution
○ the algorithm is extremely work efficient, best utilizing thread capacity
○ the tests support the strong theoretical results

● Weaknesses
○ analysis and testing has only considers small dimensions
○ needs more thorough testing of span and overall parallelism


