
Parallel Nearest Neighbors in Low
Dimensions with Batch Updates*
Guy E. Blelloch, Magdalen Dobson (CMU)
Presented by Vishaal Ram

Nearest Neighbors

k-nearest neighbors problem

● the problem: given a point set P, after some initial
preprocessing, be able to compute for any point, the
k-nearest neighbors in P
○ optionally be able to support efficient updates

● computing nearest neighbors of points is a fundamental
problem in computer science
○ applications in graphics, AI, and particle physics

● research currently is focused on approximate high dimension
nearest neighbors and exact lower dimension nearest
neighbors
○ this paper is focused on the later category

Current Algorithms

kd-tree

● The most common method for computing
k-nearest neighbors in low dimensions in the
kd-tree

● Each node represents a point in the point set
● The children of the node consist of all points on

either side of the parent node in some dimension
● The subdividing dimension typically alternates

through each of the n-dimensions

● Question: How should the split node be selected?

kd-tree complexity

● Construction:
○ At each level of the tree, the median is computed in O(n) time. As there are O(log n)

levels, the total complexity becomes O(n log n). However on very unbalanced trees,
this can approach O(n^2) in practice

● Insertion/Deletion:
○ Insertion and deleting is quick, involving a O(log n) binary search to find the desired

point.
● Nearest Neighbors:

○ Nearest neighbors can also be computed in O(log n) time. The idea is to traverse
the tree, keeping track of the intersection of the dividing hyperplane and a sphere
centered at the search point.

Morton ordering

● The morton curve (or Z-order curve) describes a
space filling curve on an arbitrary dimensional
space.

● For a point, we take its integer coordinates in
binary form and interleave the digits. We then
sort the points based on this new value.

● We take advantage of the following property of
such an ordering:
○ for any given points p and q in the ordering,

all points in the rectangle between p and q
lie between the points in the ordering

Morton ordering complexity

● Construction:
○ extremely quick, a simple sort can be performed in O(n log n) time worst case

● Insertion/Deletion:
○ set insertion and deletion can also be done in O(n log n)

● Nearest Neighbors:
○ we can simply scan neighboring points to find the nearest neighbors. The worst

case complexity is still O(n) if the points are not evenly distributed, though in most
practical cases it’s closer to O(k)

Previous Work

● Arya and Mount
○ balanced box decomp tree (variant of kd-tree with splitting rule that attempts to

divide both space and point count). Their queries take O(k/e log n) work though
their implementation doesn’t support updates

● Chan
○ a minimalistic Morton ordering approach that uses random offset to reduce

adversarial inputs. Has O(n log n) preprocessing time and O(1/e log n) expected
time per query

● Conner and Kumar
○ An improvement on Chan that provides expected O(k log k) work for queries given

constant bound expansion

zd-tree

zd-tree

● Based on the previous two approaches we conclude that kd-trees have slow
preprocessing but fast query times while morton ordering has fast preprocessing but
slow query times

● The idea is to combine both approaches:
○ we construct a kd-tree with a splitting rule based on morton ordering
○ this aims to combine the advantages of both approaches
○ we call this new data structure the zd-tree

● We also have an efficient parallel batch update algorithm
● Assumptions:

○ Bounded expansion constant and bounded ratio

Assumptions

● requires that the distances between
points are within some bounded ratio

● requires that the density of points in
metric space doesn’t change rapidly

Bounded Expansion Constant Bounded Ratio

Data Structure

● We construct a kd-tree as follows:
○ the root note represents the entire bounding box
○ we then split the points into child nodes depending on whether their Morton value

at bit i is a 0 or 1
○ each internal node of the tree stores the two opposite corners of the bounding box

represented by the children, as well as the parent node
○ the leaf nodes additionally store the set of points it contains

■ every node is contained in exactly one leaf node
■ the number of nodes in the leaf is bounded by a constant

Construction

● To construct the tree we first preprocess the input
○ shift each coordinate by a random offset. this

will not affect the queries and will allow us to
achieve better average complexity

● Using a comparison function by Chan, we can
compute the Morton sort in O(n log n) work, though
with a linear time radix sort we can do O(n^e) span.

● Creating the tree is done with a divide and conquer
algorithm
○ we parallel recurse on both sides of the tree,

computing the split point with a binary search
○ even when completely unbalanced, the total

work remains O(n log n)

Downward Search

● We first define a downward recursive algorithm for k-nearest neighbors to a point p
● Maintain a candidate set of k points that we update as we find closer points
● let r be the distance from p to the kth farthest point (r = inf if <k points)
● search vertex v only if bounding box intersects ball of radius r around p
● if node is a leaf, iterate through all points and update set if necessary

○ otherwise recurse on children, prioritizing those whose center is close to p

Upward Search

● A more efficient search that uses downward search as a subroutine
● The idea is that during a search, only a small proportion of the tree actually needs to be

traversed
● We start at the leaf node containing p, once again maintaining a set of candidate points
● First add all the nodes in the leaf node
● Then we traverse up to the parent only if the ball around p with radius r extends outside

the current node’s bounding box
○ when searching the parent, we also search the parent’s other children using the

downward search algorithm

Batch-dynamic Updates

● Since all points are stored at leaf nodes, performing
updates is extremely simple

● To insert a single point q, first locate the leaf node that
would contain q

● If inserting q directly would increase the size of the leaf
past the threshold, subdivide into two children and insert
q accordingly
○ otherwise directly add q into the leaf node

● We extend to parallel batch update by recursion from the
root, splitting up the batch along the way

● We avoid cases where the insertion would require
rebuilding the entire tree (e.g. cases where the number of
bits changes) by requiring a fixed bounding box for all the
points beforehand

Complexity Analysis

Build Time

● From the bounded ratio assumption, the bounding box has max length d_max, which
must be divided until the space between points is at most d_min.

● Since d_max/d_min = poly(n), d_max is halved O(log n) times so the tree has depth O(log
n).

● For sorting, radix sort takes O(n) as we only require O(log n) bits, proving the work bound.

Search Time

● We apply the upward search algorithm we presented before

● For the proof, we divide into two parts: the work from searching through points in the
leaf nodes and the work from traversing the zd-tree to find those leaves

Lemma 1

● Firstly, the log k factor arises from the O(log k) cost of each point insertion in the set
● The initial approximation is found by traversing up the tree from the starting leaf, stopping

once we read a node with at least k descendants
○ we know the parent B’s bounding box has O(k) points by the expansion constant
○ Let r be the side length of B, then we know the desired points must be within box(p, r)
○ If we expand the box twice, the resulting box Q must contain all the desired points

and by expansion ratio, we still encompass O(k) points as desired.

Lemma 2

● let B be the search area box defined in the
previous lemma

● The largest cut of B, divides it into 2^d boxes,
which each adds at most O(k) cost from traversing
their leaf nodes

● Thus it suffices to show that the expected max
distance between two leaf nodes in B is O(1)

Lemma 2 cont.

● Suppose without loss of generality, the search space is a box with side length 2^h.
● The probability that it’s contained within a search box of side length 2^(h+j) is precisely

((2^j-1)/2^j)^d due to random offsets
● This the the probability that the length between two leaf nodes is j
● Therefore the expectation of the length is

● and the result follows.

Experiments

Results

● tests against other state-of-the-art implementations were done on a 72-core machine

Conclusion

● Strengths
○ based on empirical results, the algorithm scales well with large datasets, both in

build time and query execution
○ the algorithm is extremely work efficient, best utilizing thread capacity
○ the tests support the strong theoretical results

● Weaknesses
○ analysis and testing has only considers small dimensions
○ needs more thorough testing of span and overall parallelism

