DiskANN: Fast Accurate Billion-point Nearest Neighbor Search on a Single Node

S.J. Subramanya, Devvrit, R. Kadekodi, R. Krishaswamy, H.V. Simhadri (2019)
K-Nearest Neighbors (search)

- Given P points and query q, find the nearest k points to q
- Highly useful for recommendation systems and many machine learning applications
- In this paper, points are assumed to be in high dimensional Euclidean space
- Goal: solve kNN with ms level latency on billions of points in hundreds of dimensions on a standard workstation
- In order to facilitate many queries, need to construct a small low latency data structure for solving this problem

Image credits:
Approximate KNN

- Approximations are easier than finding exactly the k nearest neighbors
- X-recall@Y measures the fraction of the X nearest neighbors that show up within an output list of Y candidates
- Ideally algorithms perform well for k-recall@k
- Approaches include k-d trees, which perform poorly for high dimensions, and Locality Sensitive Hashing, which is bad at exploiting distributional quirks
- Conventional wisdom: things should usually fit in main memory, as disks are too slow
 - SSDs take several hundred microseconds per random read: only 5 to 10 accesses are possible if we want 5-ms latency
Prior SOTA approaches

- Inverted Index and Data Compression
 - Split data into M partitions and compare query to a few of the nearest partitions
 - Uses compressed form of points so that all points fit in main memory
 - Less than 64 GB of memory needed for 1B points, sub-5 ms results, but also 1-recall@1 is about 0.5
 - Can achieve good 1-recall@100 values

- Shard-based approach
 - Split into many shards, with one index per shard. Send queries to multiple candidate shards in order to find all nearest neighbors
 - Points are uncompressed, so only shards fit in memory, not the whole thing: even 100M points needs 75 GB memory
 - Achieves 0.98 100-recall@100 with sub-5 ms latencies on 2B points
Graph-based indexing algorithms

- Naive distance computations take too long: too many distances to compute
- Graphical techniques form a sparse graph on the points.
- Given a source point, compute a neighbor to a given point by repeatedly adding neighbors from the nearest candidate into the candidate pool.
- Converges so long as SNG property holds: for any source s and point p either s and p are adjacent or there is a neighbor of p closer to both s and p.

Algorithm 1: GreedySearch(s, x_q, k, L)

Data: Graph G with start node s, query x_q, result size k, search list size $L \geq k$

Result: Result set \mathcal{L} containing k-approx NNs, and a set \mathcal{V} containing all the visited nodes

begin

initialise sets $\mathcal{L} \leftarrow \{s\}$ and $\mathcal{V} \leftarrow \emptyset$

while $\mathcal{L} \setminus \mathcal{V} \neq \emptyset$ do

let $p^* \leftarrow \arg \min_{p \in \mathcal{L} \setminus \mathcal{V}} \| x_p - x_q \|

update $\mathcal{L} \leftarrow \mathcal{L} \cup \mathcal{N}_{\text{out}}(p^*)$ and $\mathcal{V} \leftarrow \mathcal{V} \cup \{p^*\}$

if $|\mathcal{L}| > L$ then

update \mathcal{L} to retain closest L points to x_q

return [closest k points from \mathcal{L}; \mathcal{V}]
RobustPrune technique

- SNG graphs have too many hops: as many as $O(n)$ in a 1d graph.
- RobustPrune with alpha > 1 ensures that if s, p aren’t adjacent then there is a closer point adjacent to p whose distance from s is a fraction of the distance from s to p.
- Leads to logarithmic hop count.
- Construction is too slow when candidate set is large.

Algorithm 2: RobustPrune($p, \mathcal{V}, \alpha, R$)

Data: Graph G, point $p \in P$, candidate set \mathcal{V}, distance threshold $\alpha \geq 1$, degree bound R.

Result: G is modified by setting at most R new out-neighbors for p.

```
begin
    $\mathcal{V} \leftarrow (\mathcal{V} \cup \text{out}(p)) \setminus \{p\}$
    $\text{out}(p) \leftarrow \emptyset$
    while $\mathcal{V} \neq \emptyset$ do
        $p^* \leftarrow \arg \min_{p' \in \mathcal{V}} d(p, p')$
        $\text{out}(p) \leftarrow \text{out}(p) \cup \{p^*\}$
        if $|\text{out}(p)| = R$ then
            break
        for $p' \in \mathcal{V}$ do
            if $\alpha \cdot d(p^*, p') \leq d(p, p')$ then
                remove $p'$ from $\mathcal{V}$
```

Vamana

- Starts with random regular graph
- Runs RobustPrune only on candidate vertices encountered when trying to reach p from s
 - These vertices are likely to be on a relatively direct s-p path, giving better edges
- Runs two passes, once with alpha=1 and once with alpha=2
 - Former is faster and quickly smooths out the graph, latter adds long-distance connections

<table>
<thead>
<tr>
<th>Algorithm 3: Vamana Indexing algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data: Database P with n points where i-th point has coords x_i, parameters α, L, R</td>
</tr>
<tr>
<td>Result: Directed graph G over P with out-degree $\leq R$</td>
</tr>
<tr>
<td>begin</td>
</tr>
<tr>
<td>initialize G to a random R-regular directed graph</td>
</tr>
<tr>
<td>let s denote the medoid of dataset P</td>
</tr>
<tr>
<td>let σ denote a random permutation of $1..n$</td>
</tr>
<tr>
<td>for $1 \leq i \leq n$ do</td>
</tr>
<tr>
<td>let $[\mathcal{C}, V] \leftarrow$ GreedySearch($s, x_{\sigma(i)}, 1, L$)</td>
</tr>
<tr>
<td>run RobustPrune($\sigma(i), V, \alpha, R$) to update out-neighbors of $\sigma(i)$</td>
</tr>
<tr>
<td>for all points j in $N_{\text{out}}(\sigma(i))$ do</td>
</tr>
<tr>
<td>if $</td>
</tr>
<tr>
<td>run RobustPrune($j, N_{\text{out}}(j) \cup {\sigma(i)}, \alpha, R$) to update out-neighbors of j</td>
</tr>
<tr>
<td>else</td>
</tr>
<tr>
<td>update $N_{\text{out}}(j) \leftarrow N_{\text{out}}(j) \cup \sigma(i)$</td>
</tr>
</tbody>
</table>
Comparison

- **HNSW:**
 - Only uses single pass with alpha=1
 - Candidate set for each RobustPrune is only final candidate set: much more local graph
 - Empty graph initialization
 - On optimal parameters, about 50% slower than Vamana at index construction on 1M vertices
 - Average vertex requires about 11 out-of-cache hops for 1M vertices

- **NSG:**
 - Only uses single pass with alpha=1
 - Complicated initialization of approximation k-NN graph.
 - On optimal parameters, about 200% slower than Vamana at index construction on 1M vertices
 - Average vertex requires about 9 out-of-cache hops for 1M vertices

- **Vamana:**
 - Average vertex requires between 3 and 7 out-of-cache hops for 1M vertices depending on average degree
DiskANN

- Store the Vamana index on disk (with full precision vertices) and compressed vertices in main memory
- During GreedySearch, simultaneously collect neighbors for several nearby candidates
- Vertices within 3 hops of source vertex are stored in cache
 - Because only 3 out-of-cache hops are needed on average, only 3 disk queries are needed
- To compute index without using too much memory, use k-means clustering to find cluster centers and map each point to 2 nearby clusters
 - Empirically, computing Vamana index for each cluster and taking edge unions performs reasonably well but doesn’t need much memory to compute
 - One-shot Vanama on 1B vertices takes 1100GB of RAM to construct, but only runs about 20% faster per query
 - Construction times are reported but are on different machines and therefore unclear how to compare
- Full-precision vertices are retrieved when visiting vertices to get better results while taking advantage of easier compressed calculations when choosing vertices to visit
Comparison with comparable memory footprints

- Recall that single-machine in-memory methods use Inverted Indexing and Data Compression
- Generally good 1-recall@100, but poor 1-recall@1
- 1-recall@1 for IVFOADC+G+P-16 plateaus at 37.04% for 1B vertices
- 1-recall@1 for IVFOADC+G+P-32 plateaus at 62.74% for 1B vertices
- 1-recall@1 for DiskANN can reach 100% for 1B vertices, and achieves 95% within 3.5ms
Figure 2: (a) $1\text{-}\text{recall@1}$ vs latency on SIFT bigann dataset. The R128 and R128/Merged series represent the one-shot and merged Vamana index constructions, respectively. (b) $1\text{-}\text{recall@1}$ vs latency on DEEP1B dataset. (c) Average number of hops vs maximum graph degree for achieving 98% 5-recall@5 on SIFT1M.

Figure 3: Latency (microseconds) vs recall plots comparing HNSW, NSG and Vamana.
Comments

- Needs more numerical results (tables)
- Data for 1-pass Vamana vs 2-pass Vamana
- Possibly even more passes of Vamana can provide better results?