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Introduction



Graph Neural Networks
ØEach vertex has an associated feature vector (per layer)
ØAt each step, at each vertex:
ØEach neighboring vertex sends a message based on its feature
ØAggregate messages from neighbors (sum, …)
ØUpdate the current feature based on the messages

ØEach of these functions (especially the last) can be a neural network
ØStarting with the local neighborhood, each iteration implicitly 
incorporates information about more distant vertices



Graph Neural Networks
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Figure: Regina Barzilay

ØAggregate messages from neighbors (sum, …)
ØUpdate the current feature based on the messages



Applications of GNNs
ØThe final features are used as inputs to another task
ØDepends on what the final task/function/neural network is

Figure: Datacamp



GNNs are costly to train
ØIn general, GNNs combine the difficulties of NNs and graphs
ØNeural networks: matrix math, many epochs
ØUse a GPU
ØTrain in batches

ØGraphs: large, random accesses, varying neighborhood sizes
ØMuch too large to fit in GPU
ØBatches/neighborhoods may not be efficiently arranged in memory



Training overview
ØRun the model on a batch of nodes

1. Compute features at all layers
2. Compute final prediction and loss w.r.t. desired output
3. Use loss and gradients to update model weights
4. (Possibly) update initial node features

ØRepeat



Sampling vertices
ØFor large graphs, may choose to sample a fraction of the neighbors
ØIn practice, this can take the most time (on CPU)
ØNaïve implementations will access the same vertex multiple times



Distributed training
ØIdeally, we would magically fit the entire graph in CPU/GPU memory
ØGraphs that are too large must be split into partitions that fit in one 
machine’s main memory

ØEach batch can be drawn only from a single partition
ØPartitions can be:
ØDistributed to multiple machines in parallel
ØSequentially loaded and sampled, then sent to parallel GPUs
ØSequentially loaded/unloaded and used with one GPU



MariusGNN Overview
ØMain idea: it sometimes wastes more time to distribute training to 
multiple machines than to just keep parts of the graph on a single 
machine’s hard drive
ØAssuming the graph can fit on one SSD

ØAlso:
ØEfficient sampling of multi-hop neighborhoods
ØA policy for choosing which partitions to load/unload when



Schematic

Permanent graph storage:
Ø Vertex features (in partitions)
Ø Edge list (in buckets: edges 

between nodes in partition i and j)

COMET – partition loading policy
Ø Graph partitions are 

periodically loaded into main 
memory

DENSE – data structure for 
neighborhood sample reuse

Model evaluation



Training Scheme
ØTrain in epochs, each example (labeled vertex) is processed once

ØPhysical partitions are randomly assigned to logical partitions Si
ØEach logical partition is small enough to fit into main memory
ØRandom order of examples is important for model performance

ØEach logical partition is subset into training data Xi
ØIf training for link prediction, done at the level of node pairs

ØPhysical partitions and edge buckets are loaded in the order required by the order of Si
ØEach Xi is passed to the processing component, and minibatches are sampled

ØModel is evaluated on each batch, and updates are computed
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Sampling revisited
ØWe want to compute h2

A. 
ØWe sample C and D from A’s 1-hop neighborhood, using h1

C and h1
D

ØBut, we also need h1
A, which requires the same sampling



DENSE
ØData structure to save/reuse samples of 1-hop neighborhoods
ØWe can view k-hop sampling as recursive: sample 1-hop neighbors of 
the (k-1)-hop neighborhood

ØDynamic programming approach: save 1-hop samples and only sample 
unsampled nodes



DENSE

All node IDs in sample
Sampled 1-hop neighbors

Offsets into nbrs

Groups of nodes first 
reached after hop size Δ



DENSE
Ø1-hop sampling performed on CPU, in parallel across nodes
ØNumber of nodes to sample is a user parameter

ØNew neighbors are stacked onto the end of the existing arrays
ØTrade-off: reuse does reduce randomness a bit



Multi-hop sampling



DENSE on GPU
ØSent to GPU: 
ØDENSE data structure after sampling
ØBase features/representation for each 

node in DENSE.nbrs

ØForward pass on GPU:
ØIterate over each layer 
ØCompute the output for layer i according 

to the GNN
ØRemove nodes and neighbors that will not 

be needed in later layers

ØKeeping only nodes that are needed 
allows dense GPU kernels



Updating DENSE during forward pass



Partition Replacement Policy
ØRecall: this determines when each partition is loaded into memory
ØFocus on the link prediction case, so examples are vertex pairs

ØSimple idea: greedily minimize IO 
Ø swap partitions such that new partitions maximize # of new training examples
Ø e.g., BETA brings in one partition and uses edges between new & existing partitions
Øall training examples are correlated because they all have one vertex in that partition

ØRandomness of training examples is assumed by the SGD/batch training 
framework and is empirically important for model performance



Greedy replacement example



COMET Replacement Policy
ØAdd sources of randomness
ØRandom grouping of physical partitions into logical partitions
ØSmall physical partitions reduce # of nodes that must stay together
ØLarge logical partitions improve turnover/reduce IO per epoch

ØRandom selection of training examples
ØPairs of physical partitions are randomly assigned to be trained on during any  

memory state when both are loaded 

ØSequence of logical partitions is greedy – one partition is swapped at 
each step until all pairs have co-occurred
ØSequence of examples/physical partitions is not greedy



COMET Example



Replacement Policy for Node Classification
ØNo issue of correlated incident vertices, so a simple policy is 
empirically fine 
ØAll training (labeled) nodes are grouped in physical partitions. 

ØIf they can all fit in memory, load those and a few random 
partitions, up to the buffer capacity. 
ØAll training nodes are assigned to create mini batches .
ØOtherwise, load some partitions and randomly swap (without 
replacement) logical partitions until all have appeared in memory.
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Parameters
ØThree parameters affecting memory size:
Ø p, number of physical partitions
Ø l, number of logical partitions
Øc, buffer capacity

ØEdge Permutation Bias measures training on correlated examples (bad)
ØDecreased by increasing p and decreasing l

ØTraining time is dominated by I/O on logical sets (with prefetch)
ØLinear in l; linear in p only when p is very large

ØAlways want to maximize c given hardware constraints



Benchmarking



Effect of p and l



Choice of parameters
ØSet p such that each partition is the size of one disk read
ØMinimize bias without affecting time

ØSet c to be as large as possible leaving space for working memory
ØSet l = 2p/c, which is the minimizer subject to constraints
ØMinimizing l minimizes both time and bias
ØConstraints imposed by COMET: 
ØLogical partitions in buffer cl is at least 2
Øp/c = l/cl



Time-to-accuracy comparison

ØDENSE (shared sampling) gives a big speedup with a small cost in accuracy     
(due to correlated samples within each minibatch)

ØThese graphs fit in memory. Training with the graph stored on disk takes similar 
time but requires a cheaper machine



Table version



Sampling breakdown



Some Larger Graphs and Models



COMET vs BETA policies



Conclusions
ØCan train certain GNNs really efficiently with only one GPU/machine
ØAlso offers a straightforward time/memory tradeoff

ØGeneral principle: try to optimize before reaching for more compute

ØFuture work?
ØReplacement policies for other tasks, e.g. whole-graph classification
ØUse with multiple GPUs anyways


