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Introduction




Graph Neural Networks

» Each vertex has an associated feature vector (per layer)

» At each step, at each vertex:
» Each neighboring vertex sends a message based on its feature
» Aggregate messages from neighbors (sum, ...)
» Update the current feature based on the messages

» Each of these functions (especially the last) can be a neural network

» Starting with the local neighborhood, each iteration implicitly
incorporates information about more distant vertices




Graph Neural Networks

» Aggregate messages from neighbors (sum, ...)

» Update the current feature based on the messages
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Applications of GNNs

»The final features are used as inputs to another task

» Depends on what the final task/function/neural network is

Figure: Datacamp




GNNSs are costly to train
»In general, GNNs combine the difficulties of NNs and graphs

»Neural networks: matrix math, many epochs
»Use a GPU
»Train in batches

»Graphs: large, random accesses, varying neighborhood sizes
» Much too large to fit in GPU

»Batches/neighborhoods may not be efficiently arranged in memory




Training overview

»Run the model on a batch of nodes
1. Compute features at all layers

2. Compute final prediction and loss w.r.t. desired output
3. Use loss and gradients to update model weights
4. (Possibly) update initial node features

> Repeat




Sampling vertices

»For large graphs, may choose to sample a fraction of the neighbors

»In practice, this can take the most time (on CPU)

»Naive implementations will access the same vertex multiple times
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Figure 1. Example two-layer GNN aggregation for nodes {A,
B} using a sample of their two-hop incoming neighborhood.




Distributed training

»|deally, we would magically fit the entire graph in CPU/GPU memory

»Graphs that are too large must be split into partitions that fit in one
machine’s main memory

» Each batch can be drawn only from a single partition

» Partitions can be:
» Distributed to multiple machines in parallel

»Sequentially loaded and sampled, then sent to parallel GPUs
»Sequentially loaded/unloaded and used with one GPU




MariusGNN Overview

»Main idea: it sometimes wastes more time to distribute training to
multiple machines than to just keep parts of the graph on a single
machine’s hard drive

»Assuming the graph can fit on one SSD

» Also:
» Efficient sampling of multi-hop neighborhoods

» A policy for choosing which partitions to load/unload when
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Training Scheme

»Train in epochs, each example (labeled vertex) is processed once

» Physical partitions are randomly assigned to logical partitions S,
»Each logical partition is small enough to fit into main memory

»Random order of examples is important for model performance

» Each logical partition is subset into training data X
»If training for link prediction, done at the level of node pairs

» Physical partitions and edge buckets are loaded in the order required by the order of S,
»Each X is passed to the processing component, and minibatches are sampled

» Model is evaluated on each batch, and updates are computed
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Sampling revisited

»We want to compute h?,.

»We sample C and D from A’s 1-hop neighborhood, using h'- and h?,

»But, we also need h',, which requires the same sampling
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Figure 1. Example two-layer GNN aggregation for nodes {A,
B} using a sample of their two-hop incoming neighborhood.




DENSE

» Data structure to save/reuse samples of 1-hop neighborhoods

»We can view k-hop sampling as recursive: sample 1-hop neighbors of
the (k-1)-hop neighborhood

»Dynamic programming approach: save 1-hop samples and only sample
unsampled nodes
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DENSE
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DENSE

»1-hop sampling performed on CPU, in parallel across nodes
»Number of nodes to sample is a user parameter

»New neighbors are stacked onto the end of the existing arrays

» Trade-off: reuse does reduce randomness a bit

— sampled edges
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Multi-hop sampling

Algorithm 1: Multi-hop Neighborhood Sampling

Input: target_nodes: unique node IDs for k-hop sampling; node id_offsets nbr offsets

fanouts: max # of neighbors to sample per ho _ o |

1 node_id offsets = [0]; node_gids = target_nl?)del: ’ AO 0 /: L / CB:

2 nbr_offsets = [|; nbrs = []; Ag = target_nodes A1 — |i&@—| 0 / B

3 foriin[k...1] do A; | 3 | B —| 1 /C

4 | Aj_nbrs, A;_offsets = oneHopSample(A;, fanouts[i]) - Al—|3

5 nbr_offsets = cat(A;_offsets, nbr_offsets + len(A;_nbrs)) B|—-|5 5 D

6 nbrs = cat(A;_nbrs, nbrs) S - T _A_

7 A;_; = computeNextDelta(A; nbrs, node ids) nede ide fibre

8 node_id offsets = cat([0], node_id offsets + len(A;_1)) -

o | node_ids = cat(A;_;, node_ids) DENSE After Two-Hop Sampling

10 return DENSE(node_id offsets, node_ids, nbr_offsets, nbrs)




DENSE on GPU

»Sent to GPU:
» DENSE data structure after sampling

> Base features/representation for each
node in DENSE.nbrs

Algorithm 3: k' GNN Layer Additive Aggregation
> FO F'wad rd p dSS ONn G P U . Input: DENSE; H k=1 layer input vector representations

- k-1 ;
> lterate over eac h | ayer nbr_repr = H* *.index_select(DENSE.repr_map)

nbr_aggr = segment_sum(nbr_repr, DENSE.nbr_offsets)
» Compute the output for layer i according s self_repr = H*~[DENSE.node_id_offsets[1] :]
to the GNN

H* = nbr_aggr + self repr
. . return H¥

»Remove nodes and neighbors that will not

be needed in later layers

(5 I T

» Keeping only nodes that are needed
allows dense GPU kernels




Updating DENSE during forward pass

Algorithm 2: On GPU DENSE Update After Layer i

Input: node_id_offsets, node_ids, nbr_offsets, nbrs, repr_map
1 Aj—1 =node_ids[: node_id_offsets[1]]
A; = node_ids[node_id_offsets[1] : node_id_offsets[2]]
A;_nbrs = nbrs|: nbr_offsets[1len(A;)]]
nbrs = nbrs[len(A;_nbrs):]
repr_map = repr_map|len(A;_nbrs):] - len(A;-)
nbr_offsets = nbr_offsets[1len(A;):] - len(A;_nbrs)
node_ids = node_ids[node_id_offsets[1]:]
8 node_id_offsets = node_id_offsets[1:] - len(A;-;)
9 return node_id_offsets, node_ids, nbr_offsets, nbrs, repr_map
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Partiti

on Replacement Policy

> Recall: t

nis determines when each partition is loaded into memory

» Focus on the link prediction case, so examples are vertex pairs

»Simple idea: greedily minimize 10
» swap partitions such that new partitions maximize # of new training examples

» e.g., BETA brings in one partition and uses edges between new & existing partitions

»all training examples are correlated because they all have one vertex in that partition

»Randomness of training examples is assumed by the SGD/batch training
framework and is empirically important for model performance




Greedy replacement example
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Figure 4. Greedy sequence of partitions in memory S and
training examples X that are correlated. E.g., the examples
in X, all come from edge buckets containing partition four.




COMET Replacement Policy

»Add sources of randomness
»Random grouping of physical partitions into logical partitions
»Small physical partitions reduce # of nodes that must stay together

» Large logical partitions improve turnover/reduce 10 per epoch

»Random selection of training examples

» Pairs of physical partitions are randomly assigned to be trained on during any
memory state when both are loaded

»Sequence of logical partitions is greedy — one partition is swapped at
each step until all pairs have co-occurred
»Sequence of examples/physical partitions is not greedy




COMET Example
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Figure 5. Partition and training example sequences gener-
ated by COMET to minimize training example correlation.




Replacement Policy for Node Classification

»No issue of correlated incident vertices, so a simple policy is
empirically fine

» All training (labeled) nodes are grouped in physical partitions.

»If they can all fit in memory, load those and a few random
partitions, up to the buffer capacity.

» All training nodes are assigned to create mini batches .

»Otherwise, load some partitions and randomly swap (without
replacement) logical partitions until all have appeared in memory.
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between nodes in partition i and j) periodically loaded into main

memory




Parameters

» Three parameters affecting memory size:
» p, number of physical partitions

» |, number of logical partitions
» ¢, buffer capacity

» Edge Permutation Bias measures training on correlated examples (bad)
» Decreased by increasing p and decreasing /

»Training time is dominated by 1/0 on logical sets (with prefetch)
»Linear in /; linear in p only when p is very large

» Always want to maximize c given hardware constraints




Benchmarking




Effect of p and |
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Choice of parameters

»Set p such that each partition is the size of one disk read
» Minimize bias without affecting time

»Set c to be as large as possible leaving space for working memory

»Set | = 2p/c, which is the minimizer subject to constraints
»Minimizing | minimizes both time and bias

» Constraints imposed by COMET:
» Logical partitions in buffer ¢, is at least 2

»p/c =1/




Time-to-accuracy comparison

0Node Classification (Papers100M) Link Prediction (Freebase86M)
4%, 0.8+ 6x

0.6 -
== M-GNN Mem 1 GPU

- = M-GNN Disk 1 GPU

——— M-GNN Mem 1 GPU &C
— = M-GNN Disk 1 GPU S 0.4 1

Accuracy
N B O
o o o o

- DGL 4 GPUs 0.2 - -+ DGL 1 GPU
- PyG 4 GPUs - PyG 1 GPU
1 1 1 1 1 1 1 1 1 O-O_ I 1 I 1
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» DENSE (shared sampling) gives a big speedup with a small cost in accuracy
(due to correlated samples within each minibatch)

» These graphs fit in memory. Training with the graph stored on disk takes similar
time but requires a cheaper machine




Table version

Table 3. MariusGNN, DGL, and PyG for node classification
on large-scale graphs using a GraphSage GNN. Using a single
GPU, MariusGNN can reach the same level of accuracy as
multi-GPU baselines 3-8 faster and up to 64x cheaper.

Epoch (min.) Accuracy Cost ($/epoch)

Dataset Papers Mag Papers Mag Papers Mag

M-GNNpfern 077 257 6638 6317 016  1.05
M-GNNp;sr 083 094 66.03 6253 0.04  0.05
DGL 307 7.83 6698 6373 063  3.19
PyG 8.01 19 6693 6347 163  7.75




Sampling breakdown

CPU Sampling Time (ms)

#Layers 1 2 3 4 5

M-GNN 14 18 103 401 1.8k
DGL 57 28 376 5.4k 49k
PyG 22 59 1227 19k 96k

GPU Computation Time (ms)

1 2 3 4 3

4 6.1 21 153 OOM
47 29 215 1231 OOM
32 13 168 OOM OOM

Number of Nodes/Edges Sampled Per Mini Batch

1 2 3 4 5

12k/13k 136k/181k 1M/2M  6M/17M  23M/91M
13k/20k 182k/278k 2M/4M  9M/37M  33M/222M
13k/20k 178k/258k 2M/4M  9M/32M  31M/174M




Some Larger Graphs and Models

Epoch (min.) MRR Cost ($/epoch) Epoch (min.) MRR Cost ($/epoch)
Dataset FBL Wiki FB  Wiki FB Wiki Model GS GAT GS GAT GS GAT
M-GNNpyemm 17.5 46.6 .7285 .4655 3.57 9.38 M-GNNafern 17.5 52.6 7285 .7331  3.57 10.7
M-GNNp;s 342 69.9 7216 4156 1.74 3.56 M-GNNpisk 34.2 56.9 7216 7251  1.74 2.90
DGL 152 844 7091 OOT 31.0 172 DGL 152 151 .7091 .6516 31.0 30.8
PyG 108 312 7267  .4683  22.0 63.6 PyG 108 107 7267 7252 22.0 21.8




COMET vs BETA policies

Mem Disk-Based MRR Epoch (min.)

Model Graph
MRR  COMET BETA COMET BETA

FB15k-237 Dataset 0.8 Freebase86M Dataset

DM 237 2533 2659 2431  1.78 1.95
0.30
DM  FB 7209 7220 7189 1373 1751 & o3 #9050 | 07 wo O | & comer Avouming
DM Wiki 3941 4071 3951 2254 2775 § 02 0.6 4 O Grid Search
GS 237 2825 2736 2369  3.07 3.28 0154+—F— 1o . .
GS FB 7342 7123 6976  47.45  50.08 0 1 2 3 4 0 2000 4000
GS Wiki 4658 4078 4080  76.66  82.34 Epoch Time (s)  Epoch Time (min)
GAT 237 2869 2341 2076  3.51 3.90
GAT FB 7418 7053 6860  42.01  46.02




Conclusions

»Can train certain GNNs really efficiently with only one GPU/machine
» Also offers a straightforward time/memory tradeoff

»General principle: try to optimize before reaching for more compute

» Future work?
»Replacement policies for other tasks, e.g. whole-graph classification

»Use with multiple GPUs anyways




