Direction-Optimizing BFS

Beamer, Asanovic, Patterson

Graph terminology

Diameter: maximum (shortest) distance between two nodes
Small-world graph: diameter proportional to log(|V|)

Scale-free graph: # nodes with degree k is proportional to k¥

Social networks usually satisfy both properties (facebook, twitter, wikipedia,
hollywood)

BFS recap

function breadth-first-search(vertices, source) function top-down-step(vertices, frontier, next, parents)
frontier +— {source} for v € frontier do
next < {} for n € neighbors[v] do

parents < [-1,-1,...-1]
while frontier # {} do

- : parents[n] < v
top-down-step(vertices, frontier, next, parents) . t U {n)
frontier <— next nex nex n

next < {} end if
end while end for
return tree end for

if parents[n] = -1 then

Top-down step (expanding frontier)

100%

4 outcomes when we check an edge

80%

[Failed child
[peer 7
B valid Parent

1. claimed child (good) so%l
2. failed child
40% - [CcClaimed Child ||
3. peer
4,

20%F

valid parent

Top-down BFS analysis

100%

1. Initially, lots of claimed children,
since most of graph is unvisited

80%

60%

2. More peers as frontier grows

3. Finally, valid parents when most of 4%}
graph is visited 20%}

[claimed child |
3 Failed Child
0 reer

B valid Parent

0 1 2 3 4 5 6
Step

As more nodes are visited, fewer edge checks result in claimed children.

Bottom-up BFS

Look at all the unvisited nodes and check if it’s adjacent to frontier

function bottom-up-step(vertices, frontier, next, parents)
for v € vertices do
if parents[v] = -1 then
for n € neighbors[v] do
if n € frontier then
parents[v] <— n
next <— next U {v}
break
end if
end for
end if
end for

Small side effect: one writer per node, no need for CAS in parallel
implementation

Bottom-up BFS downsides

Bottom-up BFS downsides

Wastes a lot of work if most of the graph is unvisited
Overhead from nodes not connected to the source

Loops over all the nodes to find unvisited ones

Hybrid BFS

Intuitively:

- When frontier is small: use top-down BFS
- When frontier is large: use bottom-up BFS

7
6} ®—@® Top-down |_
sk ©—0 Bottom-up |_
0}
e[
F3r
2..
1 o
0 d Q @ m m |
0 2 3 4 5 6

Step

Hybrid BFS

ns=number of nodes in frontier
ms=number of edges to check in the frontier (exact)

m. = number of edges to check from unvisited nodes (upper bound)

Since myis a upper bound, use a heuristic to determine when to switch to
bottom-up

Due to bottom-up overhead, switch to top-bottom when frontier is small

Hybrid BFS

Switch from top-down to bottom-up when:

Ty

Switch from bottom-up to top-down when:

n
nf<—

B

X and X are hyperparameters

Parameter Tuning

Runtime is dominated by middle steps when the frontier is large, so tuning X is
more important than X.

7
6} ®—@® Top-down |_
sk ©—0 Bottom-up |_
0}
el
F3r
2..
1 o
0 d o o m m |
0 2 3 4 5 6

Step

Parameter Tuning: a

How large is the frontier (edgewise), compared to unvisited edges, before we

switch to bottom-up?
100%

g 80% g
C
(]
z
=
9 60% —® kron25 hollywood |
~ ©—0 erdos25 “— ljournal
(O]
o A 00 rmat25 orkut
0 [~ 1
O O facebook wikipedia
—® flickr X twitter
200/ 1 L 1 L 1 L
’ 5 10 15 20 25 30

«

Parameter Tuning: g

How small is the frontier (nodewise), before we switch back to top-down?

100% i
Y 80%pk g .
C
©
=
£
9 60% kron25 hollywood .
- O—0 erdos25 “—ljournal |
(O]

e 00 rmat25 orkut
40% | .
O O facebook wikipedia
—@® flickr X twitter
20% n — aaaal M aaaaaal aal

10° 10* 102 10° 10* 10° 16°
3

Evaluation

Compare against regular top-down BFS

Also, compare against optimal hybrid: “offline” oracle

9 T
sl B Top-down
/3 Top-down-check
/ / Bottom-up
Y 1 B Hybrid-heuristic |
= Hybrid-oracle

Speedup

kron25 erdos25 rmat25 facebook flickr hollywood ljournal orkut wikipedia twitter

Parallelism

MTEPS = millions of edges traversed per second (more on Hong et al next slide)

U ! T ! erdos25 rmat25
6000 - ©—@ . 1000 T T T T T T T T T T T T T T T oé
*—e OO
50001 o | M 8001 1T & 00 H
@ = 600} %el I : -
E 4000 b - '.’.‘—r—?uo—. o
- b o o
g &8 o »° o)
& 3000f _ = 400f & 1t 4 1
§ 5 i
et (] [o
3 2000} . “ 200t g’c,/'/'/‘ 1 I -
1000 | <3 0 1 1 1 L L 1 1 L L 1 1 1 L 1 1 1
0 2 4 6 810121416 0 2 4 6 8 10121416
Threads Threads
0 1
1 10 Thrze(;ds 40 80 OO0 Hybrid-heuristic ®—@® Hong CPU+GPU ©—® Hong CPU

Related Work

Hong et al. also uses a hybrid-heuristic approach. Instead of switching
algorithms, they switch between CPU and GPU

Most of the other related papers are on optimizing memory utilization and
parallelism

