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Graph terminology

Diameter: maximum (shortest) distance between two nodes
Small-world graph: diameter proportional to log(|V|)

Scale-free graph: # nodes with degree k is proportional to k¥

Social networks usually satisfy both properties (facebook, twitter, wikipedia,
hollywood)



BFS recap

function breadth-first-search(vertices, source) function top-down-step(vertices, frontier, next, parents)
frontier +— {source} for v € frontier do
next < {} for n € neighbors[v] do

parents < [-1,-1,...-1]
while frontier # {} do

- : parents[n] < v
top-down-step(vertices, frontier, next, parents) . t U {n)
frontier <— next nex nex n

next < {} end if
end while end for
return tree end for

if parents[n] = -1 then



Top-down step (expanding frontier)
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Top-down BFS analysis
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As more nodes are visited, fewer edge checks result in claimed children.



Bottom-up BFS

Look at all the unvisited nodes and check if it’s adjacent to frontier

function bottom-up-step(vertices, frontier, next, parents)
for v € vertices do
if parents[v] = -1 then
for n € neighbors[v] do
if n € frontier then
parents[v] <— n
next <— next U {v}
break
end if
end for
end if
end for

Small side effect: one writer per node, no need for CAS in parallel
implementation



Bottom-up BFS downsides



Bottom-up BFS downsides

Wastes a lot of work if most of the graph is unvisited
Overhead from nodes not connected to the source

Loops over all the nodes to find unvisited ones



Hybrid BFS

Intuitively:

- When frontier is small: use top-down BFS
- When frontier is large: use bottom-up BFS
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Hybrid BFS

ns=number of nodes in frontier
ms=number of edges to check in the frontier (exact)

m. = number of edges to check from unvisited nodes (upper bound)

Since myis a upper bound, use a heuristic to determine when to switch to
bottom-up

Due to bottom-up overhead, switch to top-bottom when frontier is small



Hybrid BFS

Switch from top-down to bottom-up when:

Ty

Switch from bottom-up to top-down when:

n
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X and X are hyperparameters



Parameter Tuning

Runtime is dominated by middle steps when the frontier is large, so tuning X is
more important than X.
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Parameter Tuning: a

How large is the frontier (edgewise), compared to unvisited edges, before we

switch to bottom-up?
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Parameter Tuning: g

How small is the frontier (nodewise), before we switch back to top-down?
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Evaluation

Compare against regular top-down BFS

Also, compare against optimal hybrid: “offline” oracle
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Parallelism

MTEPS = millions of edges traversed per second (more on Hong et al next slide)

U ! T ! erdos25 rmat25
6000 - ©—@ . 1000 T T T T T T T T T T T T T T T oé
*—e OO
50001 o | M 8001 1T & 00 H
@ = 600} %el I : -
E 4000 b - '.’.‘—r—?uo—. o
- b o o
g &8 o »° o)
& 3000f _ = 400f & 1t 4 1
§ 5 i
et (] [ o
3 2000} . “ 200t g’c,/'/'/‘ 1 I -
1000 | <3 0 1 1 1 L L 1 1 L L 1 1 1 L 1 1 1
0 2 4 6 810121416 0 2 4 6 8 10121416
Threads Threads
0 1
1 10 Thrze(;ds 40 80 OO0 Hybrid-heuristic ®—@® Hong CPU+GPU ©—® Hong CPU




Related Work

Hong et al. also uses a hybrid-heuristic approach. Instead of switching
algorithms, they switch between CPU and GPU

Most of the other related papers are on optimizing memory utilization and
parallelism



