
The More the Merrier: 
Efficient Multi-Source Graph Traversal
Manuel Then*,  Moritz Kaufmann*,  Fernando Chirigati†,  Tuan-Anh Hoang-Vu†,

Kien Pham†,  Alfons Kemper*,  Thomas Neumann*,  Huy T. Vo†

 * Technische Universität München,   † New York University

6.506 Algorithm Engineering – Paper Presentation
Presenter: Joseph Zhang



Problem and Background



Motivation

Graph analytics are becoming essential as more 
and more information is represented and 
manipulated as graphs

- social network analysis
- road network analysis
- web mining
- computational biology



Breadth-First Search

BFS-based graph transversal is an important part of 
many graph analysis algorithms

- shortest path computation
- graph centrality calculation
- k-hop neighborhood detection

Often computationally expensive ;-;

- volume and nature of the data
- large datasets commonplace



Prior Work – Speeding Up BFS

Taking advantage of parallelism from modern 
multicore systems

Focused on optimizing execution of single traversal 
(so single-source BFS)

Based around exploring vertices in parallel – issues:

- thread synchronization
- workload imbalance
- poor spatial and temporal locality of memory 

accesses

Distributed graph processing to span parallel graph 
traversals over multiple machines



Prior Work – Areas for Improvement

Many applications require many BFSs over same graph, e.g. one BFS from 
each vertex

- calculating graph centralities
- enumerating neighborhoods for all vertices
- solving all-pairs distance problem

Previous parallel BFS approaches are inefficient for large graphs

- they execute multiple single-thread BFSs in parallel, instead of parallel 
BFSs sequentially, to avoid synchronization and data transfer costs

Could instead share computation across multiple BFSs

- same vertex could be visited by various transversals!



Small-World Networks

Distance between any two vertices small compared to size of graph  
(average geodesic distance increases logarithmically with graph size)

Few vertices have very many neighbors, most have few connections 
(scale-free networks)

Small-world networks common in real-world graphs: social networks, 
gene networks, neural networks, electrical power grids, and Web 
connectivity graphs, which can need graph analytics

Example: six degrees of separation theory – suggests everyone is 
only six or fewer steps away from each other, e.g. one study of 720 
million facebook users showed 92% connected by just 5 steps



BFS Overview



BFS Algorithm (Single-Source)

Vertex states during traversal:

- discovered = visited
- explored = edges and neighbors also visited

visit only contains vertices with same geodesic distance 
from source, i.e. in same BFS level, maximum level is 
diameter of graph (which is low in small-world networks)

- all vertices discovered in few iterations
- number of vertices discovered per level grows fast
- concurrent BFSs have high chance of discovering 

common vertices in same iteration



BFS Optimizations

Small-world graphs tend to have few connected components 
(often just one), larger graph means many more vertices to see

BFS as shown currently has some potential issues:

- Lack of memory locality (many random accesses to seen 
and adjacency list)

- Later in traversal, most vertices already discovered, so 
many failed checks to seen

- Bottom-up approach can help, by iterating over 
non-discovered vertices and looking for edges to connect 
them to discovered ones

Prior work mainly focused on parallelizing a single BFS, using a 
level-synchronous approach

- requires synchronization of visit and visitNext
- race conditions when multiple threads access seen



Multi-Source BFS (MS-BFS)



MS-BFS Overview

Main goal: optimize execution of multiple independent BFSs on same graph, 
focused on non-distributed environment and in-memory processes, introduces 
new issues:

- memory locality issues from multiple traversals over same graph
- scalability would require very minimal resource usage
- avoid synchronization overheads which are high with many BFSs

Solutions:

- share computation across concurrent BFSs (small-world networks!)
- hundreds of BFSs executed in single CPU core
- use no locking nor atomic operations



MS-BFS Reasoning

Idea: combine accesses to same vertex 
across multiple BFSs

- amortize cache miss costs
- improve cache locality
- avoid redundant computation

Analysis on LDBC graph with 1 million 
vertices shown in chart

For example, in level 4, we can explore more 
than 60% of vertices only once for 250 or 
more BFSs, instead of once for each BFS – 
reduces memory accesses significantly!



MS-BFS Reasoning







MS-BFS Algorithm

Additional inputs are sets of BFSs and their 
corresponding source vertices

Instead of single seen set, each vertex has 
its own seen set of BFSs that already 
discovered it

visit and visitNext contain tuples of vertices 
and set of BFSs that must explore them

For iterations in each BFS level, all BFS sets 
from visit that refer to selected vertex are 
merged into a set which now contains all 
BFSs that explore it in the level



MS-BFS Algorithm

For each neighbor n of v, we have set D 
of BFSs to explore it in the next level

If a BFS explores v in current level, and it 
has not discovered n yet, it must then 
explore n, so we update visitNext and 
seen set for n accordingly

Neighbors for v traversed only once for 
all BFSs in D, and each vertex n explored 
only once for them, significantly 
reducing memory accesses!



MS-BFS Example

Multiple BFSs executed concurrently and share their explorations, but vertices are 
still discovered and explored sequentially – different from parallel single BFS!



MS-BFS Bit Operations Optimizations

In practice, all those union and set 
difference operations, and scans of 
visit, become prohibitively expensive 
for many concurrent BFSs

Idea: use efficient bit operations!

Represent the sets as fixed-size bit 
fields, fixing maximum concurrent 
BFSs to machine-specific parameter, 
such as multiple of register width



MS-BFS Bit Operations Example



Algorithm Tuning



Algorithm Tuning
Memory Access Tuning



Aggregated Neighbor Processing

Still have random accesses to visitNext 
and seen arrays, as well as possible 
repeated application-specific BFS 
computation

Idea: we can further reduce number of 
BFS computations and random 
accesses by first collecting then 
processing all vertices to be explored 
in next BFS level in batch

Removes dependency between visit 
and seen and BFS computation



Using ANP in MS-BFS

Process BFS level in two stages:

- Explore all vertices in visit to determine 
in which BFSs neighbors to be visited

- Sequentially iterate over these 
neighbors in visitNext and perform bit 
fields updates and BFS computations

For each discovered vertex, these steps are 
only done once, aggregating neighbor 
processing

Distributive property of binary operations



Using ANP in MS-BFS

Advantages of ANP:

- reduces memory accesses to seen
- sequential instead of random access 

to seen – better memory locality
- reduces BFS computation executions

Some effects of the advantages:

- improves low-level cache usage
- reduces cache misses

ANP speeds up MS-BFS by 60-110 %



Direction-Optimized Traversal

Top-down – conventional BFS, go from 
discovered to non-discovered vertices

Bottom-up – opposite direction, explore 
non-discovered vertices

Heuristic based on number of 
non-traversed edges to choose strategy

Often top-down near beginning and 
bottom-up near end of search

Helps reduce random accesses



Neighbor Prefetching

ANP reduces random accesses to seen 
array, but we still have visitNext updates

Detect neighbors and explicitly prefetch 
some of these memory addresses, so 
that they are likely in cache when 
computing visitNext for them

Prefetching tens or hundreds of 
neighbors seemed to show some 
improvements in experiments



Algorithm Tuning
Execution Strategies



How Many BFSs?

MS-BFS bit operations more efficient using native 
machine instructions

Should set number of BFSs based on register and 
instruction width of CPU



Even More BFSs?

What if CPU-optimized number of BFSs just isn’t enough?

Use multiple registers for the bit fields

- more shared vertex exploration
- can align to cache line boundaries

Execute multiple MS-BFS in parallel

- scales almost linearly with cores

Execute multiple MS-BFS sequentially

- lower memory requirements

We can also combine the three approaches!



Maximum Sharing Heuristic

Recall that MS-BFS becomes faster as more BFSs explore 
same vertex in a given level

Group BFSs based on connected components, since if 
they’re not running in the same one they can’t share 
vertices or edges

Heuristic to group BFSs by their source vertex degrees

- small-world networks have low diameter and often 
few vertices with high degree (scale-free)

- intuition: vertices with higher degrees should have 
many common neighbors

- group BFSs based on sorting their source vertices 
by descending degree



Application
Closeness Centrality Computation



All-Vertices Closeness Centrality

Closeness centrality measures how close 
a vertex is to the rest of the vertices in 
the graph

To compute for all vertices, running a 
BFS from each vertex is needed!

Some further optimizations of the BFS 
computations can also be done to count 
discovered vertices per level efficiently



Experimental Evaluation



Experimental Evaluation 
Experiment Setup



Algorithms and Datasets

Different BFS implementations:

- MS-BFS with various 
register widths, and also 
single vs. multiple registers 
per bit field

- non-parallel direction 
optimized BFS (DO-BFS)

- state-of-the-art BFS 
algorithm

- textbook BFS (T-BFS)



Experimental Evaluation 
Experiment Results



Scalability Results – Data Size

CL indicates using 
multiple registers 
for single bit field to 
fill entire cache line



Scalability Results – Multicore

CL indicates using 
multiple registers 
for single bit field to 
fill entire cache line



Scalability Results – BFS Count

CL indicates using 
multiple registers 
for single bit field to 
fill entire cache line



Impact of Algorithm Tuning
ANP – aggregated 
neighbor processing

DOT – direction 
optimized traversal

CL – use of entire 
cache lines 

PF – neighbor 
prefetching

SHR – heuristic for 
maximum sharing



Performance Summary



Summary and Discussion



Summary

MS-BFS leverages small-world network properties to run multiple independent BFSs concurrently, with further 
algorithm, memory, and tuning optimizations to

- reduce random memory accesses
- amortize expensive cache misses
- utilize wide registers and efficient bit operations

Experimental results show MS-BFS outperforming existing solutions at running many BFSs on the same graph in 
terms of data and multicore scalability as well as performance

Possible directions for future work, such as

- combine approach with existing parallel BFS algorithms
- adapt MS-BFS for distributed environments and GPUS
- developing better heuristics for maximizing sharing
- applying MS-BFS to other analytics algorithms
- assessing MS-BFS on other types of graphs



Discussion

Some possible questions to consider:

What are some possible limitations of MS-BFS, and maybe possible directions we 
could explore to try to address them?

Thoughts on possible generalizations or extensions of some kind for the 
approaches given in the paper, for future work?

Some potential strengths and/or weaknesses of the work presented in the paper?


