A Functional Approach to External
Graph Algorithms

J. Abello, A. L. Buchsbaum, and J. R. Westbrook

Presenter: Nguyen Le

Motivation

e Current algorithms do not completely address the I/0 implications of graph traversal
This paper producing algorithms that are purely functional
o Functions applied to input data and producing output data
o Information, once written, remains unchanged
e Allows standard checkpointing techniques
e Amenable to general purpose programming language transformations - reduce running
time
e New divide-and-conquer approach
e Divise external algorithms for graph problems

/0 Model of Complexity C B

N = number of items in the instance, @ === -

Internal External
. . . Memory < > Memory
M = number of items that can fit in main memory, (M) (unbounded)

B = number of items per disk block.

Typical computer server: M= 109 and B~ 10*3; 1< B<M/2,and M < N.

Assume that B = O(N/ log® N) for some fixed integer i > 0

Definitions for graph

V = number of vertices
E = number of edges
N =V + E = number of items in the instance
sort(N) = ©((N/B)log,, 5(N/B)),

scan(N) = [N/BT

Goal: replace N by N/B and log, by log,, ;

Problems

e Connected components
o Maximal set of vertices such that each pair of vertices is connected by a path

e Minimum spanning forests
o Spanning forest that minimizes the sum of the weights of the edges

e Bottleneck minimum spanning forests
o Spanning forest that minimizes the weight of the maximum edge

e Maximal matching
o Maximal set of edges such that no two edges share a common vertex

e Maximal independent set
o Maximal set of vertices such that no two vertices are adjacent

Previous approaches

e PRAM Simulation

o Simulate a CRCW PRAM algorithm using one processor and an external disk
o Not practical - No algorithm based on the simulation has been implemented
o Typically used to prove the existence of an external memory algorithm of a given 1/0
complexity
e Buffering Data Structures

o Buffer trees, which support sequences of insert, delete, and deletemin operations on N
elements

o Hard to apply external graph algorithms
Data structure is not functional

Functional Graph Transformations

We generalize the above into a purely functional approach to design external graph
algorithms. Formally, let f»(G) denote the solution to a graph problem P on an input
graph G = (V, E). For a subgraph G; = S(G) C E of G, let T} be a transformation
that combines G and the solution fp(G) to create a new subgraph, G,. Let 7; be a
transformation that maps the solutions fp(G;) and fp(G,), to a solution to G. We
summarize the approach as follows:

1. G; < S(G);
2. Gy < T1(G, fp(Gr));
3. fp(G) =Ty(G, Gi, Gy, fp(G1), fp(Gr)).

Algorithm CC

. Let E be any half of the edges of G; let G| = (V, E)).
. Compute CC(G) recursively.

. Let G’ = G/CC(Gy).

. Compute CC(G’) recursively.

. CC(G) = CC(G") URL(CC(G"), CC(GY)).

WV AW =

e Functional if S, T., and T, can be implemented without side effects on their arguments
e Selection, relabeling, contraction, and (vertex and edge) deletion can be i
functionally

Selection

3.1. Selection. Let I be a list of items with totally ordered keys. Select(Lk) returns
the kth biggest element from 7, including multiplicity;i.e., |{x € I : x < Select(l, k)}| <
kand|{x € I : x < Select(, k)}| > k. Weadaptthe classical algorithm for Select(lk)
[3]. Aggarwal and Vitter [2] use the same approach to select partitioning elements for
distribution sort:

1. Partition I into cM-element subsets, for some 0 < ¢ < 1.
Determine the median of each subset in main memory. Let S be the set of medians
of the subsets.

e

m < Select(S, [§/2]).

Let 11, I, I3 bethe sets of elements less than, equal to, and greater than m, respectively.
If | 11| > k, then return Select(/y, k).

Else if |I1| + |I2| > k, then return m.

Else return Select(l3, k — |I1| — | I2]).

B P 9

Relabeling

3.2. Relabeling. Given forest F' and edge set I, we construct the relabeling, I’ =
RL(F, I) defined above, as follows:

1. Sort F' by source vertex, v.

2. Sort I by second component.

3. Process F and / in tandem.
(a) Let{s, h} € I be the current edge to be relabeled.
(b) Scan F starting from the current edge until finding (p(v), v) such that v > A.
(¢) If v = h, then add {s, p(v)} to I”; otherwise, add {s, A} to 1”.

4. Repeat steps 2 and 3, relabeling first components of edges in /" to construct /.

Contraction

3.3. Contraction. Define a subcomponent to be a collection of edges among vertices
in the same connected component of G; subcomponents need not be maximal. Given
a graph G and a list C = {C}, C;, ...} of delineated subcomponents, the contraction
of G by C is defined as the graph G/C = G|¢|, where Gy = G, and for i > 0,
G; = G,;_1/C;. That is, the vertices of each subcomponent in C are contracted into a
supervertex.

Let I be the edge list of G, and assume that each C; is presented as an edge list. (If
each is input as a vertex list, the following procedure can be simplified.) We form an
appropriate relabeling to / to effect the contraction, as follows:

1. Foreach C; = {{uy, v1},...}:

(a) Ri <~ 0.

(b) Pick u; to be the canonical vertex.

(c) For each {x, y} € C;, add (u;, x) and (u1, y) to relabeling R;.
2. Apply relabeling | J; R; to I, yielding the contracted edge list I’

For each C;, one vertex, u1, is picked to be the canonical vertex into which all others
will be contracted. Step 1(c) adds an arc (u;, v) to the relabeling forest for each vertex v
in C;. The result, R;, is a star, rooted at u, with a leaf for each other vertex that appears
in C;. Each subcomponent, C;, thus gets contracted into its canonical vertex in step 2.

Vertex/ Edge Deletion

3.4. Deletion. Given edge lists I and D, it is straightforward to construct I’ = I\ D:
simply sort / and D lexicographically, and process them in tandem to construct /’ from
the edges in 7 but not D.

Similarly, given a vertex list U, we can construct I” = {{u,v} e I :u ¢ U Av & U}.
Sort U, and then sort / by first component; then process U and / in tandem, constructing
list I’ of edges in I whose first components are not in U. Then sort I’ by second
component, and process it in tandem with U, constructing list /” of edges in I’ whose
second components are not in U. We abuse notation and write /” = I\U when U is a
set of vertices.

CC, MM, MSF

Framework

1. G; < S(G);
2. G, « T (G, fp(G1));

3. fp(G) =Ta(G, G, G2, fp(G1), fP(G2)).

Algorithm MSF

1. Let E; be any lowest-cost half of the edges of G; i.e., every edge in E\ E;
has weight at least that of the edge of greatest weight in E,. Let G; =
(V7 E 1) »

. Compute MSF(G) recursively.

. Let G’ = G/MSF(G»).

. Compute CC(G’) recursively.

. MSF(G) = EX(MSF(G')) U MSF(G,).

(O I SNV I S

DR W=

wm AW~

Algorithm CC

Let £ be any half of the edges of G; let G; = (V, E;).
Compute CC(G1) recursively.

Let G’ = G/CC(Gy).

Compute CC(G’) recursively.

CC(G) = CC(G"Y URL(CC(GH, CC(GY)).

Algorithm MM

. Let E; be any non-empty, proper subset of edges of G; let G; = (V, E).
. Compute MM(G) recursively.

. Let E' = E\V(MM(G));let G' = (V, E’).

. Compute MM(G’) recursively.

. MM(G) = MM(G") U MM(G).

BMSF (Bottleneck MSF)

e If the lower-weighted half of the edges span the graph, they contain a BMSF -

discard lower half
e Otherwise, any BMSF contains an edge from the upper half - discard upper

half
e Open problem whether BMSFs can be computed externally more efficiently

than MSFs

Randomized Algorithms

Boruvka Step - O(sort(E)) 1/0s

e Identify (and contract) the minimum weight edge incident on each vertex
e Sort by first and second components of each edge. Scan to select minimum
weight edge

e Halves number of vertices
e Preserves the MSF of the contracted graph

Randomized Algorithms

Karger et al. [21] combine Boruvka steps with a random selection technique that
also at least halves the number of edges, resulting in a linear-time randomized MSF
algorithm, which we can directly externalize. Their algorithm proceeds as follows:

1. Perform two Boruvka steps, which reduces the number of vertices by at least a factor
of four. Call the contracted graph G’.

2. Choose a subgraph H of G’ by selecting each edge independently with probability

1/2.

. Apply the algorithm recursively to find the MSF F of H.

4. Delete from G’ each edge {u, v} such that (1) there is a path, P(u, v), from u to v in
F and (2) the weight of {u, v} exceeds that of the maximum-weight edge on P (u, v).
Call the resulting graph G”.

5. Apply the algorithm recursively to G”, yielding MSF F”.

. Return the edges contracted in step 1 together with those in F’.

(98]

Semi-external Problems

V < M but E > M. Example: monitoring long-term traffic, telephone calls
Maintain in memory information about the V simplifies the problems
MSF - O(E log V)- using dynamic tree to maintain the internal forest
BMSFs - check internally if an edge subset spans a graph

Results

Table 1. I/0 bounds for our functional external algorithms.

Deterministic Randomized
Problem I/O bound I/0 Bound With probability
Connected components O(sort(E) + £sort(V) log, 17) O (sort(E)) 1 — ()
MSFs O(sort(E) + £sort(V)log, 1;) Of(sort(E)) 1 — eRE)
BMSFs O(sort(E) + £sort(V) log, 17) O (sort(E)) 1 — e%E)
Maximal matchings 0(%s0rt(V) log, %) O(sort(E)) 1 — ¢ for any fixed ¢

Maximal independent sets O(sort(E)) 1 — ¢ for any fixed ¢

Open problems

e Parallel disks
e Devise incremental and dynamic algorithms for external graph problems

e Determine whether or not testing a graph for connectedness
o Easier testing -> Improved BMSFs

