
A Simple and Practical Linear-Work
Parallel Algorithm for Connectivity

Julian Shun, Laxman Dhulipala, and Guy Blelloch

1

Connected Component Labeling

0

0

0

0

0

1 1

2

2

Given an undirected graph, label all vertices such that L(u) = L(v) if
and only if there is a path between u and v

Connected Component Labeling

• What are some simple algorithms?
– Depth-first search
• Linear work/span
• Versions of DFS that are parallel are not work-efficient

– Breadth-first search
• Linear work
• Parallelism limited by graph diameter
• Polylogarithmic span version not work-efficient

– Spanning forest
• Good parallelism
• Practical parallel implementations not linear work

3

Connected Component Labeling
• Parallel (polylogarithmic span) algorithms
– Shiloach and Vishkin, Awerbuck and Shiloach
• Combines (contracts) vertices in each iteration
• O(m log n) work, O(log n) span

– Reif, Phillips
• Uses randomization to simplify contraction algorithms
• O(m log n) work and O(log n) span w.h.p.
• O(log n) rounds but don’t guarantee a constant fraction

of edges removed
– O(m) work algorithms
• Gazit ’91, Halperin/Zwick ’96, Cole et al. ‘96,

Poon/Ramachandran ‘97, Pettie/Ramachandran ’02
• Quite complicated. No one has implemented these

4

Our Contributions

• Practical parallel connectivity algorithm with
linear work and polylogarithmic span

• Experimental evaluation: competitive with
existing parallel implementations (that are not
linear-work and polylogarithmic span)

5

Previous Work: Random Mate
• Idea: Form a set of non-overlapping star subgraphs and

contract them
• Each vertex flips a coin. For each Heads vertex, pick an

arbitrary Tails neighbor (if there is one) and point to it

Tails

Heads

Source: “Parallel Algorithms” by Guy E. Blelloch and Bruce M. Maggs
6

Tails

Heads Form stars

Contract

Repeat until each component
has a single vertex

Expand vertices back in reverse
order with label of neighbor

Source: “Parallel Algorithms” by Guy E. Blelloch and Bruce M. Maggs

Previous Work : Random Mate

7

CC_Random_Mate(L, E)
 if(|E| = 0) Return L //base case
 else

1. Flip coins for all vertices
2. For v where coin(v)=Heads, hook to arbitrary Tails neighbor w and set

L(v) = L(w)
3. E’ = { (L(u),L(v)) | (u,v) ∈ E and L(u) ≠ L(v) }
4. L’ = CC_Random_Mate(L, E’)
5. For v where coin(v)=Heads, set L’(v) = L’(w) where w is the Tails neighbor

that v hooked to in Step 2
6. Return L’

• Each iteration requires O(m+n) work and O(1) span
∙ Assumes we do not pack vertices and edges

• Each iteration eliminates at least 1/4 of the vertices in
expectation à O(log n) rounds w.h.p.

W = O(m log n) w.h.p. S = O(log n) w.h.p.

Previous Work : Random Mate

8

Low diameter decomposition

9

Low diameter decomposition

• (β,d)-decomposition (0 < β < 1) partitions V into
V1,…,Vk such that
– The shortest path between any two vertices in a

partition is at most d
– The number of inter-partition edges is at most βm

• Used in linear system solvers and metric
embeddings

10

Low diameter decomposition
• A (β, O(log n / β))-decomposition can be computed in O(m)

expected work and O(log2 n / β) span w.h.p. [Miller et al. 2013]
– Start breadth-first searches from vertices with exponentially-

distributed (parameter β) start times
• Each BFS creates a partition containing the source and all vertices

explored
• A BFS does not explore vertices already visited by another BFS
• All vertices will have started BFS or been explored by time O(log n / β)

– BFS’s are work-efficient and terminate in O(log n / β) iterations.
• Each iteration requires O(log n) span.

– Bounding number of inter-partition edges:
• An edge is inter-partition if the first two BFS’s that reach it do so within a

one time step of each other
• Probability that this happens is at most β due to properties of exponential

distribution
• Linearity of expectations gives at most βm edges cut

11

Low diameter decomposition example

4

8

5

1

7

2

9
3

6

0

12

Our Connectivity Algorithm
• Compute a (β, O(log n / β))-decomposition
• Contract each partition into a single vertex
• Recurse

13

Our Connectivity Algorithm
• Compute a (β, O(log n / β))-decomposition
• Contract each partition into a single vertex
• Recurse

Analysis for β=1/2
• Assume contraction can be done in linear work and in

O(log n) span
• m/2 edges remain after each round in expectation
– Work = O(m) + O(m/2) + … = O(m) in expectation

• O(log n) levels of recursion suffice w.h.p.
– Span = O(log n) * O(log2 n / β) = O(log3 n) w.h.p.

14

Contraction

• Contraction can be done in O(log n) span with
bookkeeping and parallel prefix sums
– Intra-partition edges are filtered out in O(m) work

and O(log n) span
– Prefix sums: relabel vertices to smaller range
– Duplicate edges removed using parallel hashing in

O(m) work and O(log n) span
• Not needed theoretically

15

Improving span
• Each round of BFS can be implemented in O(log* n)

span w.h.p. using approximate prefix sum and
compaction [Gil-Matias-Vishkin ‘91, Goodrich-
Matias-Vishkin ‘94]
– Improves span of low diameter decomposition to

O(log n log* n)
• Recurse for O(log log n) rounds
– Left with O(m/log n) edges
– Switch to O(m log n) work, O(log n) span algorithm

• Result: Linear work algorithm with
O(log n log log n log* n) span w.h.p.

16

Low diameter decomposition variants
• Resolving conflicts among BFS’s
– Decomp-min: breaks ties deterministically
• Miller et al. showed this produces (β, O(log n/β))-

decomposition
• Uses write-with-min (via compare-and-swap)
• Requires two phases

– Decomp-arb: breaks ties arbitrarily
• We prove (2β, O(log n/β))-decomposition
• Uses compare-and-swap
• Requires just a single phase

– Decomp-arb-hybrid: uses direction-optimizing BFS
• This is the fastest one and used in the following

experimental results
17

Experiments
• 40-core (with 2-way hyper-threading) Intel

Nehalem machine
• Implemented in Cilk Plus
• 3 different implementations, but only showing

best one
• Real-world and artificial graphs

18

Compare to existing implementations
• Existing implementations
– Sequential spanning forest
– Parallel spanning forest (Problem Based

Benchmark Suite)
– Parallel spanning forest (Patwary et al.)
– Parallel BFS (Ligra)
– Parallel BFS + Label propagation (Slota et al.)

• None provably linear work and polylog span

19

3D grid graph (n = 108, m = 3x108)

20

1

10

100

1 80

Ru
nn

in
g

tim
e

(s
ec

on
ds

)

Threads

Serial-SF
Ours

BFS (Ligra)

BFS + Label prop. (Slota et al.)
Parallel-SF (Patwary et al.)

• Competitive with other implementations

com-Orkut graph (n ≈ 3x106, m ≈ 108)

21

0.01

0.1

1

10

1 80

Ru
nn

in
g

tim
e

(s
ec

on
ds

)

Threads

Serial-SF

Ours

BFS (Ligra)

BFS + Label prop. (Slota et
al.)

• Fastest implementation uses single BFS

Line graph (n = 5x108, m = 5x108)

22

1

10

100

1000

1 80

Ru
nn

in
g

tim
e

(s
ec

on
ds

)

Threads

Serial-SF

Ours

BFS (Ligra)

BFS + Label prop. (Slota et
al.)
Parallel-SF (Patwary et al.)

• Algorithms based on single BFS do poorly

Our algorithm is competitive
• No “worst-case” inputs
• Performance always close to the fastest

implementation for any graph
– Only at most 70% slower than spanning forest

algorithms, and usually much less
– Can be faster or slower than BFS, depending on

graph diameter

• Up to 13x speedup on 40 cores relative to
sequential

• 18—39x self-relative speedup
23

Conclusion
• Simple and practical linear-work, polylog-span

connectivity algorithm
– Can be easily modified to compute spanning

forest
• As far as we know, first to be both practical

and have linear work and polylog span
• Implementations competitive with existing

parallel implementations
• Future direction: Can similar ideas give us a

practical linear-work parallel algorithm for
minimum spanning forest?

24

Extra Slides

25

2 4 8 16 24 32 40 40h

Number of threads

0

101

102
R

u
n
n
in

g
tim

e
(s

e
co

n
d
s)

serial-SF

decomp-arb-CC

decomp-arb-hybrid-CC

decomp-min-CC

parallel-SF-PBBS

parallel-SF-PRM

hybrid-BFS-CC

multistep-CC

3D grid graph

26

2 4 8 16 24 32 40 40h

Number of threads

0

R
u
n
n
in

g
tim

e
(s

e
co

n
d
s)

serial-SF

decomp-arb-CC

decomp-arb-hybrid-CC

decomp-min-CC

parallel-SF-PBBS

hybrid-BFS-CC

multistep-CC

com-Orkut graph

27

2 4 8 16 24 32 40 40h

Number of threads

0

101

102

R
u
n
n
in

g
tim

e
(s

e
co

n
d
s)

serial-SF

decomp-arb-CC

decomp-arb-hybrid-CC

decomp-min-CC

parallel-SF-PBBS

parallel-SF-PRM

Line graph

28

Running time vs β

• Running time is similar across wide range of β

0 0.2 0.4 0.6 0.8 1

beta

0

1

2

3

4

R
u
n
n
in

g
tim

e
(s

e
co

n
d
s)

decomp-arb-CC

decomp-arb-hybrid-CC

decomp-min-CC

0 0.2 0.4 0.6 0.8 1

beta

0

1

2

3

4

5

6

7

R
u
n
n
in

g
tim

e
(s

e
co

n
d
s)

decomp-arb-CC

decomp-arb-hybrid-CC

decomp-min-CC

3D-grid graph rMat graph

29

