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Connected Component Labeling
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Given an undirected graph, label all vertices such that L(u) = L(v) if 
and only if there is a path between u and v



Connected Component Labeling

• What are some simple algorithms?
– Depth-first search
• Linear work/span
• Versions of DFS that are parallel are not work-efficient

– Breadth-first search
• Linear work
• Parallelism limited by graph diameter
• Polylogarithmic span version not work-efficient

– Spanning forest
• Good parallelism
• Practical parallel implementations not linear work
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Connected Component Labeling
• Parallel (polylogarithmic span) algorithms 
– Shiloach and Vishkin, Awerbuck and Shiloach
• Combines (contracts) vertices in each iteration
• O(m log n) work, O(log n) span

– Reif, Phillips
• Uses randomization to simplify contraction algorithms
• O(m log n) work and O(log n) span w.h.p.
• O(log n) rounds but don’t guarantee a constant fraction 

of edges removed
– O(m) work algorithms
• Gazit ’91, Halperin/Zwick ’96, Cole et al. ‘96, 

Poon/Ramachandran ‘97, Pettie/Ramachandran ’02
• Quite complicated. No one has implemented these 
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Our Contributions

• Practical parallel connectivity algorithm with 
linear work and polylogarithmic span

• Experimental evaluation: competitive with 
existing parallel implementations (that are not 
linear-work and polylogarithmic span)
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Previous Work: Random Mate
• Idea: Form a set of non-overlapping star subgraphs and 

contract them
• Each vertex flips a coin. For each Heads vertex, pick an 

arbitrary Tails neighbor (if there is one) and point to it

Tails

Heads

Source: “Parallel Algorithms” by Guy E. Blelloch and Bruce M. Maggs 
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Tails

Heads Form stars

Contract

Repeat until each component
has a single vertex

Expand vertices back in reverse 
order with label of neighbor

Source: “Parallel Algorithms” by Guy E. Blelloch and Bruce M. Maggs 

Previous Work : Random Mate
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CC_Random_Mate(L, E)
  if(|E| = 0) Return L //base case
  else

1. Flip coins for all vertices
2. For v where coin(v)=Heads, hook to arbitrary Tails neighbor w and set 

L(v) = L(w)
3. E’ = { (L(u),L(v)) | (u,v) ∈ E and L(u) ≠ L(v) }
4. L’ = CC_Random_Mate(L, E’)
5. For v where coin(v)=Heads, set L’(v) = L’(w) where w is the Tails neighbor 

that v hooked to in Step 2
6. Return L’

• Each iteration requires O(m+n) work and O(1) span
∙ Assumes we do not pack vertices and edges

• Each iteration eliminates at least 1/4 of the vertices in 
expectation à O(log n) rounds w.h.p.

W = O(m log n) w.h.p.   S = O(log n) w.h.p.

Previous Work : Random Mate
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Low diameter decomposition
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Low diameter decomposition

• (β,d)-decomposition (0 < β < 1) partitions V into 
V1,…,Vk such that
– The shortest path between any two vertices in a 

partition is at most d
– The number of inter-partition edges is at most βm

• Used in linear system solvers and metric 
embeddings
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Low diameter decomposition
• A (β, O(log n / β))-decomposition can be computed in O(m) 

expected work and O(log2 n / β) span w.h.p. [Miller et al. 2013]
– Start breadth-first searches from vertices with exponentially-

distributed (parameter β) start times 
• Each BFS creates a partition containing the source and all vertices 

explored
• A BFS does not explore vertices already visited by another BFS
• All vertices will have started BFS or been explored by time O(log n / β) 

– BFS’s are work-efficient and terminate in O(log n / β) iterations. 
• Each iteration requires O(log n) span.

– Bounding number of inter-partition edges:
• An edge is inter-partition if the first two BFS’s that reach it do so within a 

one time step of each other
• Probability that this happens is at most β due to properties of exponential 

distribution 
• Linearity of expectations gives at most βm edges cut
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Low diameter decomposition example
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Our Connectivity Algorithm
• Compute a (β, O(log n / β))-decomposition
• Contract each partition into a single vertex
• Recurse
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Our Connectivity Algorithm
• Compute a (β, O(log n / β))-decomposition
• Contract each partition into a single vertex
• Recurse

Analysis for β=1/2
• Assume contraction can be done in linear work and in 

O(log n) span
• m/2 edges remain after each round in expectation
– Work = O(m) + O(m/2) + … = O(m) in expectation

• O(log n) levels of recursion suffice w.h.p.
– Span = O(log n) * O(log2 n / β) = O(log3 n) w.h.p.
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Contraction

• Contraction can be done in O(log n) span with 
bookkeeping and parallel prefix sums
– Intra-partition edges are filtered out in O(m) work 

and O(log n) span
– Prefix sums: relabel vertices to smaller range
– Duplicate edges removed using parallel hashing in 

O(m) work and O(log n) span
• Not needed theoretically
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Improving span
• Each round of BFS can be implemented in O(log* n) 

span w.h.p. using approximate prefix sum and 
compaction [Gil-Matias-Vishkin ‘91, Goodrich-
Matias-Vishkin ‘94]
– Improves span of low diameter decomposition to 

O(log n log* n)
• Recurse for O(log log n) rounds
– Left with O(m/log n) edges
– Switch to O(m log n) work, O(log n) span algorithm

• Result: Linear work algorithm with                   
O(log n log log n log* n) span w.h.p.
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Low diameter decomposition variants
• Resolving conflicts among BFS’s
– Decomp-min: breaks ties deterministically
• Miller et al. showed this produces (β, O(log n/β))-

decomposition
• Uses write-with-min (via compare-and-swap)
• Requires two phases

– Decomp-arb: breaks ties arbitrarily
• We prove (2β, O(log n/β))-decomposition
• Uses compare-and-swap
• Requires just a single phase

– Decomp-arb-hybrid: uses direction-optimizing BFS
• This is the fastest one and used in the following 

experimental results
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Experiments
• 40-core (with 2-way hyper-threading) Intel 

Nehalem machine
• Implemented in Cilk Plus
• 3 different implementations, but only showing 

best one
• Real-world and artificial graphs
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Compare to existing implementations
• Existing implementations
– Sequential spanning forest
– Parallel spanning forest (Problem Based 

Benchmark Suite)
– Parallel spanning forest (Patwary et al.)
– Parallel BFS (Ligra)
– Parallel BFS + Label propagation (Slota et al.)

• None provably linear work and polylog span
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3D grid graph (n = 108, m = 3x108)
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• Competitive with other implementations



com-Orkut graph (n ≈ 3x106, m ≈ 108)
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Line graph (n = 5x108, m = 5x108)
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Our algorithm is competitive
• No “worst-case” inputs
• Performance always close to the fastest 

implementation for any graph
– Only at most 70% slower than spanning forest 

algorithms, and usually much less
– Can be faster or slower than BFS, depending on 

graph diameter

• Up to 13x speedup on 40 cores relative to 
sequential

• 18—39x self-relative speedup
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Conclusion
• Simple and practical linear-work, polylog-span 

connectivity algorithm
– Can be easily modified to compute spanning 

forest
• As far as we know, first to be both practical 

and have linear work and polylog span
• Implementations competitive with existing 

parallel implementations
• Future direction: Can similar ideas give us a 

practical linear-work parallel algorithm for 
minimum spanning forest?
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Extra Slides
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Running time vs β

• Running time is similar across wide range of β  
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