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Connected Component Labeling

O—

Given an undirected graph, label all vertices such that L(u) = L(v) if
and only if there is a path between u and v



Connected Component Labeling

 What are some simple algorithms?

— Depth-first search

* Linear work/span

* Versions of DFS that are parallel are not work-efficient
— Breadth-first search

* Linear work

* Parallelism limited by graph diameter

* Polylogarithmic span version not work-efficient
— Spanning forest

* Good parallelism

* Practical parallel implementations not linear work



Connected Component Labeling

e Parallel (polylogarithmic span) algorithms
— Shiloach and Vishkin, Awerbuck and Shiloach

 Combines (contracts) vertices in each iteration
* O(m log n) work, O(log n) span
— Reif, Phillips
* Uses randomization to simplify contraction algorithms
* O(m log n) work and O(log n) span w.h.p.

* O(log n) rounds but don’t guarantee a constant fraction
of edges removed

— O(m) work algorithms

* Gazit ‘91, Halperin/Zwick ‘96, Cole et al. ‘96,
Poon/Ramachandran ‘97, Pettie/Ramachandran ’'02

* Quite complicated. No one has implemented these



Our Contributions

* Practical parallel connectivity algorithm with
linear work and polylogarithmic span

* Experimental evaluation: competitive with
existing parallel implementations (that are not
linear-work and polylogarithmic span)




Previous Work: Random Mate

* |dea: Form a set of non-overlapping star subgraphs and
contract them

e Each vertex flips a coin. For each Heads vertex, pick an
arbitrary Tails neighbor (if there is one) and point to it
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Source: “Parallel Algorithms” by Guy E. Blelloch and Bruce M. Maggs



Previous Work : Random I\/I1ate
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Previous Work : Random Mate

CC_Random_Mate(L, E)
if(|E| = 0) Return L //base case
else
1. Flip coins for all vertices
2. For v where coin(v)=Heads, hook to arbitrary Tails neighbor w and set
L(v) = L(w)
3. E' ={(L(u),L(v)) | (u,v) € Eand L(u) #L(v) }
4. L' =CC_Random_Mate(L, E’)
5. For v where coin(v)=Heads, set L'(v) = L'(w) where w is the Tails neighbor
that v hooked to in Step 2
6. Returnl

* Each iteration requires O(m+n) work and O(1) span
e Assumes we do not pack vertices and edges

* Each iteration eliminates at least 1/4 of the vertices in
expectation = O(log n) rounds w.h.p.

W = O(m log n) w.h.p. S = O(logn) w.h.p.



Low diameter decomposition




Low diameter decomposition

* (B,d)-decomposition (0 < B < 1) partitions V into
V,,...,V, such that

— The shortest path between any two vertices in a
partition is at most d

— The number of inter-partition edges is at most fm

* Used in linear system solvers and metric
embeddings



Low diameter decomposition

* A(B, O(log n/B))-decomposition can be computed in O(m)
expected work and O(log?n / B) span w.h.p. [Miller et al. 2013]
— Start breadth-first searches from vertices with exponentially-
distributed (parameter B) start times

e Each BFS creates a partition containing the source and all vertices
explored

* A BFS does not explore vertices already visited by another BFS
 All vertices will have started BFS or been explored by time O(logn / B)

— BFS’s are work-efficient and terminate in O(log n / B) iterations.
» Each iteration requires O(log n) span.
— Bounding number of inter-partition edges:

* An edge is inter-partition if the first two BFS’s that reach it do so within a
one time step of each other

* Probability that this happens is at most B due to properties of exponential
distribution

* Linearity of expectations gives at most fm edges cut



Low diameter decomposition example




Our Connectivity Algorithm

 Compute a (B, O(log n/ B))-decomposition
* Contract each partition into a single vertex
* Recurse
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Our Connectivity Algorithm

 Compute a (B, O(log n/ B))-decomposition
* Contract each partition into a single vertex

* Recurse

Analysis for B=1/2

* Assume contraction can be done in linear work and in
O(log n) span

* m/2 edges remain after each round in expectation
— Work = O(m) + O(m/2) + ... = O(m) in expectation

* O(log n) levels of recursion suffice w.h.p.
— Span = O(log n) * O(log?n / B) = O(log3 n) w.h.p.




Contraction

e Contraction can be done in O(log n) span with
bookkeeping and parallel prefix sums

— Intra-partition edges are filtered out in O(m) work
and O(log n) span
— Prefix sums: relabel vertices to smaller range

— Duplicate edges removed using parallel hashing in
O(m) work and O(log n) span

* Not needed theoretically



Improving span

* Each round of BFS can be implemented in O(log™ n)
span w.h.p. using approximate prefix sum and
compaction [Gil-Matias-Vishkin ‘91, Goodrich-
Matias-Vishkin ‘94]

— Improves span of low diameter decomposition to
O(log n log™ n)

* Recurse for O(log log n) rounds
— Left with O(m/log n) edges
— Switch to O(m log n) work, O(log n) span algorithm

* Result: Linear work algorithm with
O(log nlog log n log* n) span w.h.p.



Low diameter decomposition variants
* Resolving conflicts among BFS’s

— Decomp-min: breaks ties deterministically

* Miller et al. showed this produces (B, O(log n/B))-
decomposition

e Uses write-with-min (via compare-and-swap)
* Requires two phases
— Decomp-arb: breaks ties arbitrarily
* We prove (2B, O(log n/B))-decomposition
e Uses compare-and-swap
e Requires just a single phase
— Decomp-arb-hybrid: uses direction-optimizing BFS

* This is the fastest one and used in the following
experimental results



Experiments

40-core (with 2-way hyper-threading) Intel
Nehalem machine

Implemented in Cilk Plus

3 different implementations, but only showing
best one

Real-world and artificial graphs



Compare to existing implementations

* Existing implementations

— Sequential spanning forest

— Parallel spanning forest (Problem Based
Benchmark Suite)

— Paralle
— Paralle

— Paralle

spanning forest (Patwary et al.)
BFS (Ligra)
BFS + Label propagation (Slota et al.)

* None provably linear work and polylog span



3D grid graph (n = 103, m = 3x103)
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Running time (seconds)

com-Orkut graph (n = 3x10°, m = 109)
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Running time (seconds)

Line graph (n = 5x10%, m = 5x103)
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e Algorithms based on single BFS do poorly
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Our algorithm is competitive

No “worst-case” inputs
Performance always close to the fastest
implementation for any graph

— Only at most 70% slower than spanning forest
algorithms, and usually much less

— Can be faster or slower than BFS, depending on
graph diameter

Up to 13x speedup on 40 cores relative to
sequential

18 —39x self-relative speedup



Conclusion

Simple and practical linear-work, polylog-span
connectivity algorithm

— Can be easily modified to compute spanning
forest

As far as we know, first to be both practical

and have linear work and polylog span

Implementations competitive with existing
parallel implementations

Future direction: Can similar ideas give us a
practical linear-work parallel algorithm for
minimum spanning forest?
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Running time (seconds)
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Running time (seconds)
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Running time vs 3
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* Running time is similar across wide range of 3



