PowerGraph: Distributed Graph-Parallel
Computation on Natural Graphs

Gonzalez et al.

Background

Large-scale graph computation: targeted advertising, NLP, etc

Datasets and models have grown beyond the limits of single machine
computation

Graph-parallel abstraction:

- vertex-programs run in parallel
- interact with each other through edges

Pregel

Synchronous message-based abstraction
At each step, the vertex-program:

- receives messages from the previous step
- does some computation
- sends messages to neighbors

Advance to next step after all vertices are done

GraphLab

Asynchronous shared-memory abstraction
Each vertex-program can:

- read data from its own vertex, edges, and neighbors
- schedule neighbors to run

Real-word Graphs

Social media and web networks are “scale-free”, degree distribution follows
power law (# vertices with degree d is proportional to 1/d¥)

Number of Vertices
)
=]
]
—h
~
Number of Vertices
=)
Q
]
N

10 10 10 10 10 10° 10 10 10
In Degree Out Degree

(a) Twitter In-Degree (b) Twitter Out-Degree

Real-word Graphs

Scale-free graphs present challenges for existing graph-parallel abstractions:

- Work depends on degree, can vary widely across vertices
- Hard to partition
- Does not parallelize within vertex-programs

Generic Vertex-Program Model

GraphLab and Pregel have a similar overall structure
GAS model for graph computation:

- Gather: collect information about adjacent vertices and edges
- Apply: update value of central vertex
- Scatter: update the data on adjacent edges

Generic Vertex-Program Model

Formally:

e @D g(DuDuy D)
vENbDr |u]

DY < a(D,,X)

v € Nbr[u] - (D(w)) —s (D{}CW,D(M’V),DV)

PowerGraph

gatherin parallel

sum is commutative and
associative

scatterin parallel

Algorithm 1: Vertex-Program Execution Semantics

Input: Center vertex u

if cached accumulator a, is empty then
foreach neighbor v in gather_nbrs(u) do

y ay < sum(ay, gather(Dy, Dy,), Dy))

end

end

D, < apply(Dy, ay)

foreach neighbor v scatter_nbrs(u) do
(D Aa) < scatter(Dy, D,), Dy)

if a, and Aa are not Empty then a, < sum(a,, Aa)
else a, <— Empty

end

Delta Caching

Vertex-program runs in response to a change in a few neighbors. Normally, we
run gather on all neighbors, most of which are unchanged
foreach neighbor v scatter_nbrs(u) do
(D(l(’l’)EAa) <_ Scattel'(D“, D(U,\’)’ D‘y)
if a,, and Aa are not Empty then a, + sum(a,, Aa)

else a, <~ Empty
end

Scatter can optionally return Aa, which is added to g,

Clear a, otherwise, recompute gather on the next execution of v

Delta Caching

If we can define an inverse of the accumulation function (e.g. subtraction):
Aa = g(DuaDI(ls,\z)aD\I}ew) _g(DuaD(u,v)aDv)

We'll see an example using Aa later

PowerGraph Engine

To initialize, user activates a specific vertex or all vertices
Engine maintains a set of active vertices

- Execute active vertex-programs
- After scatter phase, vertex becomes inactive
- Vertex can activate itself or neighboring vertices

Order of execution is up to engine

Distributed Graph Placement: Edge Cut

Place a graph on p machines: construct a p-way edge-cut
o A /7) (e D
. N

Overhead from every cut edge, and have to synchronize vertex and edge data
across the cut

Intuitively: evenly assign vertices to machines, allow edges to span machines

Distributed Graph Placement: Vertex Cut

Evenly assign edges to machines, allow vertices to span machines
1 ~ (1 s |
O—L) O——E

i e O)
(=0

Only have to synchronize vertex data, so we want to minimize the number of
machines each vertex spans

Distributed Graph Placement: Vertex Cut

Formally:

min — Z A(V)
A lEV

E
s.t. max [{e € E | A(e) = m}|, <l’p|
m

K>1 is a constant imbalance factor

Randomized Vertex Cut

On p machines, randomly assigning edges to machines has expected
replication:

Vertex Cut

Let A(x) be the set of machines that vertex x is assigned to. Greedy heuristic for
edge (u, v):

1. IfA(u) and A(v) intersect, assign to a machine in the intersection

2. If A(u) and A(v) nonempty but do not intersect, assign to a machine from
the vertex with the most unassigned edges

3. If one of the vertices is assigned, pick a machine from the assigned vertex

4. If neither vertex s assigned, pick the least loaded machine

Vertex Cut

Greedy heuristic requires coordination between machines. Two approaches:

- Coordinated: maintain values of A(x) in distributed table, which is
periodically updated
- Oblivious: each machine maintains its own estimate of A(x)

MRandom

20 B Oblivious
= [JCoordinated
o
S15
w
=
i)

_gm
a
[}
o
5
0 Twitter HWood UK LJournal Amazon
(a) Actual Replication
18
‘__l"]
Predicted—, .-~ ©
S 14 L -
I ~%*0
L Random_—*
510 =7 " Oblivious
= 0 o
= K e
i
8 16 32 64
#Machines

(a) Replication Factor (Twitter)

Runtime Relative to Random

Runtime (secs)

1
MRand.
[@Obliv.
0.8 [JCoord.
0.6
0.4}
0.2
0Coloring SSSP ALS PageRank
(b) Effect of Partitioning
1000
800
Coordinated
600}«
’ Oblivious
400(© . Random
200 S - N
o ° S ;
¢ 8 16 64

32
#Machines
(b) Ingress time (Twitter)

Example: PageRank

Rank websites

- More important websites have
more links from other websites

- The links from more important
websites have more weight

PageRank

The accumulation is addition, so we
can use Aa

If node value changes enough,
recalculate ranking for neighbors

// gather_nbrs: IN_NBRS
gather (D,, D(u,v)l D)z
return D,.rank / #outNbrs (v)
sum(a, b): return a + b
apply (D, acc):
rnew = 0.15 + 0.85 *x acc

D,.delta = (rnew - D,.rank)/
#outNbrs (u)
D,.rank = rnew

// scatter_nbrs: OUT_NBRS

scatter (D,, D(u,v) V) =
if(|D,.delta|>€) Activate (v)
return delta

w
o

25 Graphlab
20 Pregel (Piccolo)
PowerGraph (Random)

PowerGraph (Coord.)

One iter runtime(seconds)
[6)]

One iter runtime(seconds)

N N W
o o

oy
o O,

[6)]

Pregel (Piccolo)
Graphlab

PowerGraph (Random)
PowerGraph (Coord.)

10 1
5 5
?.8 1.9 2 2.1 2.2 ?.8 1.9 2 24l 2.2

o

(a) Power-law Fan-In Runtime

o

(b) Power-law Fan-Out Runtime

15
o
©} Graphlab
£10
5 Pregel (Piccolo)
o PowerGraph
£ 5
Q
=
O

?.8 1.9 2 2.1 2.2

(c) Power-law Fan-In Comm.

One iter Comms(GB)

-y
o

()]

?

(d) Power-law Fan-Out Comm.

PowerGraph vs GraphLab and Pregel

Synchronous Execution (similar to Pregel)

Super-step consists of three minor-steps:

- gather on all active vertices
- apply onall active vertices
- scatter on all active vertices

Changes to vertex and edge data are committed after each minor-step

Newly-activated vertices are executed in the next super-step

Asynchronous Execution (similar to GraphLab)

Engine runs active vertices as resources become available
Changes made to vertex and edge data committed immediately

Pros:

- More effective usage of resources
- Algorithm can converge faster

Cons:

- Non-determinism

Asynchronous Execution (similar to GraphLab)

How to address non-determinism?

- serializability: every parallel execution has a corresponding sequential
execution
- Prevent adjacent vertex-programs from running concurrently

PowerGraph has Async+S

& . Syncrlonous(Randorp) g .
= 30 \(Synchronous(Oblivious) <30 No Caching
§25 25 .
S E 20 Deilta Caching
1 §1§
510
! g s
B 16 32 48 64 B 16 32 48 84 | 5 10 15 20
Number of Machines Number of Machines lteration

(a) Twitter PageRank Runtime (b) Twitter PageRank Comms (c) Twitter PageRank Delta Cache

Synchronous Experiments with PowerGraph

-a
w

c
8 s Async (Coord.) No Caching % !
@ Async (Oblivious) » . £3 Async+S 808
& 200f Async (Random) g‘mo Rl § s Async
§159 3 €, 3 Aomoss
D 4 o (

> = =) £04
o 100) S 50 o - z % _Race Induced
2 H &1 t 50 *— Conflicts
2 i Optimal il |'.
- 2 S

20 40 60 500 1000 1500 16 32 48 64 50 100 150

Number of Machines Time (s) Number of Machines Time (s)

(a) Twitter PageRank Throughput (b) Twitter PageRank Delta Cache (c) Coloring Weak Scaling (d) Coloring Conflict Rate

Asynchronous Experiments with PowerGraph

Fault Tolerance

Similar to Pregel and GraphLab, save snapshots of the graph

- Synchronous engine: snapshot between super-steps
- Asynchronous engine: suspend execution to construct snapshot

Overhead is small relative to total runtime

Related Work

Vertex cuts:

- CATALYUREK, U., AND AYKANAT, C. Decomposing irregularly sparse matrices for parallel matrix-vector
multiplication

- DEVINE, K. D., BOMAN, E. G., HEAPHY, R. T., BISSELING, R. H., AND CATALYUREK, U. V. Parallel hypergraph
partitioning for scientific computing

Graph-parallel abstractions:

- GREGOR, D., AND LUMSDAINE, A. The parallel BGL: A generic library for distributed graph computations

- CHENG, R., HONG, J., KYROLA, A., MIAO, Y., WENG, X., WU, M., YANG, F., ZHOU, L., ZHAO, F., AND CHEN, E.
Kineograph: taking the pulse of a fast-changing and connected world

- PUJOL, J. M., ERRAMILLI, V., SIGANOS, G., YANG, X., LAOUTARIS, N., CHHABRA, P., AND RODRIGUEZ, P. The
littleengine(s) that could: scaling online social networks

- KYROLA, A., BLELLOCH, G., AND GUESTRIN, C. GraphChi: Large-scale graph computation on just a PC.

