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Background

Large-scale graph computation: targeted advertising, NLP, etc

Datasets and models have grown beyond the limits of single machine
computation

Graph-parallel abstraction:

- vertex-programs run in parallel
- interact with each other through edges



Pregel

Synchronous message-based abstraction
At each step, the vertex-program:

- receives messages from the previous step
- does some computation
- sends messages to neighbors

Advance to next step after all vertices are done



GraphLab

Asynchronous shared-memory abstraction
Each vertex-program can:

- read data from its own vertex, edges, and neighbors
- schedule neighbors to run



Real-word Graphs

Social media and web networks are “scale-free”, degree distribution follows
power law (# vertices with degree d is proportional to 1/d¥)
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Real-word Graphs

Scale-free graphs present challenges for existing graph-parallel abstractions:

- Work depends on degree, can vary widely across vertices
- Hard to partition
- Does not parallelize within vertex-programs



Generic Vertex-Program Model

GraphLab and Pregel have a similar overall structure
GAS model for graph computation:

- Gather: collect information about adjacent vertices and edges
- Apply: update value of central vertex
- Scatter: update the data on adjacent edges



Generic Vertex-Program Model

Formally:
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PowerGraph

gatherin parallel

sum is commutative and
associative

scatterin parallel

Algorithm 1: Vertex-Program Execution Semantics

Input: Center vertex u

if cached accumulator a, is empty then
foreach neighbor v in gather_nbrs(u) do

y ay < sum(ay, gather(Dy, Dy, ), Dy))

end

end

D, < apply(Dy, ay)

foreach neighbor v scatter_nbrs(u) do
(D Aa) < scatter(Dy, D, ), Dy)

if a, and Aa are not Empty then a, < sum(a,, Aa)
else a, <— Empty

end




Delta Caching

Vertex-program runs in response to a change in a few neighbors. Normally, we
run gather on all neighbors, most of which are unchanged
foreach neighbor v scatter_nbrs(u) do
(D(l(’l’)EAa) <_ Scattel'(D“, D(U,\’)’ D‘y)
if a,, and Aa are not Empty then a, + sum(a,, Aa)

else a, <~ Empty
end

Scatter can optionally return Aa, which is added to g,

Clear a, otherwise, recompute gather on the next execution of v



Delta Caching

If we can define an inverse of the accumulation function (e.g. subtraction):
Aa = g(DuaDI(ls,\z)aD\I}ew) _g(DuaD(u,v)aDv)

We'll see an example using Aa later



PowerGraph Engine

To initialize, user activates a specific vertex or all vertices
Engine maintains a set of active vertices

- Execute active vertex-programs
- After scatter phase, vertex becomes inactive
- Vertex can activate itself or neighboring vertices

Order of execution is up to engine



Distributed Graph Placement: Edge Cut

Place a graph on p machines: construct a p-way edge-cut
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Overhead from every cut edge, and have to synchronize vertex and edge data
across the cut

Intuitively: evenly assign vertices to machines, allow edges to span machines



Distributed Graph Placement: Vertex Cut

Evenly assign edges to machines, allow vertices to span machines
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Only have to synchronize vertex data, so we want to minimize the number of
machines each vertex spans



Distributed Graph Placement: Vertex Cut

Formally:

min — Z A(V)
A lEV

E
s.t. max [{e € E | A(e) = m}|, <l’p|
m

K>1 is a constant imbalance factor



Randomized Vertex Cut

On p machines, randomly assigning edges to machines has expected
replication:




Vertex Cut

Let A(x) be the set of machines that vertex x is assigned to. Greedy heuristic for
edge (u, v):

1. IfA(u) and A(v) intersect, assign to a machine in the intersection

2. If A(u) and A(v) nonempty but do not intersect, assign to a machine from
the vertex with the most unassigned edges

3. If one of the vertices is assigned, pick a machine from the assigned vertex

4. If neither vertex s assigned, pick the least loaded machine



Vertex Cut

Greedy heuristic requires coordination between machines. Two approaches:

- Coordinated: maintain values of A(x) in distributed table, which is
periodically updated
- Oblivious: each machine maintains its own estimate of A(x)
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Example: PageRank

Rank websites

- More important websites have
more links from other websites

- The links from more important
websites have more weight




PageRank

The accumulation is addition, so we
can use Aa

If node value changes enough,
recalculate ranking for neighbors

// gather_nbrs: IN_NBRS
gather (D,, D(u,v)l D)z
return D,.rank / #outNbrs (v)
sum(a, b): return a + b
apply (D, acc):
rnew = 0.15 + 0.85 *x acc

D,.delta = (rnew - D,.rank)/
#outNbrs (u)
D,.rank = rnew

// scatter_nbrs: OUT_NBRS

scatter (D,, D(u,v) V) =
if(|D,.delta|>€) Activate (v)
return delta
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Synchronous Execution (similar to Pregel)

Super-step consists of three minor-steps:

- gather on all active vertices
- apply onall active vertices
- scatter on all active vertices

Changes to vertex and edge data are committed after each minor-step

Newly-activated vertices are executed in the next super-step



Asynchronous Execution (similar to GraphLab)

Engine runs active vertices as resources become available
Changes made to vertex and edge data committed immediately

Pros:

- More effective usage of resources
- Algorithm can converge faster

Cons:

- Non-determinism



Asynchronous Execution (similar to GraphLab)

How to address non-determinism?

- serializability: every parallel execution has a corresponding sequential
execution
- Prevent adjacent vertex-programs from running concurrently

PowerGraph has Async+S
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Fault Tolerance

Similar to Pregel and GraphLab, save snapshots of the graph

- Synchronous engine: snapshot between super-steps
- Asynchronous engine: suspend execution to construct snapshot

Overhead is small relative to total runtime
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