
DANIEL SCHAFFER

MARCH 12, 2024

Introduction

Review: Graph frameworks
ØAllow the execution of arbitrary graph algorithms
ØConsider the current state of a vertex and
ØUpdate the neighbors of that vertex
ØMaintain frontiers consisting of updated neighbors
ØThese will be processed soon

ØFocus here on single-machine, multi-core, in memory execution

Vertex-centric frameworks
ØProcess one frontier vertex at a time
ØPop from a priority queue of frontiers
ØHigher priority goes to vertices that will make more

“progress”

ØThen, update the neighbors
ØRe-add them to the queue with new priorities

ØWork-efficient, measured by the # of updates
ØAKA the number of edges traversed

ØNot cache efficient à memory stall

Partition-centric frameworks
ØProcess one partition of vertices at a time
ØSized to fit into cache

ØCopy the frontiers of each partition to the
partitions of their neighbors (scatter)
ØUpdate all affected vertices in each partition
using the copied fronter vertices (gather)
ØCache-efficient: working partition is always in
the cache
ØBut, not work-efficient without a priority order

Work vs Cache tradeoff

Partition-centric
Vertex-centric

A first idea
ØDo other work while we wait for data to load
ØThis can only provide a limited improvement

ØBut, this is still a useful approach in general
ØGenerally, the CPU will do this in thread-switching, but it takes time
ØAutomatically chooses places to switch
ØNeeds to move call stack and local variables each time

Coroutines
ØIf we know some information about the workflow, we can do much
better at the software level
ØCoroutines are much faster to switch
Øfunctions with specific suspend and resume points
ØRetain their local variables in allocated memory
ØDo not require a separate call stack

Prefetching data
ØRetrieving data into the cache before it is actually accessed
ØSystem may try to guess automatically
ØIf we know what data will be needed, we can specify arbitrary data
ØThis is key for coroutines

ØWidely used to avoid/hide cache misses in many libraries
ØPrefetched data is only valid if no writes are made

The CoroGraph
Framework

Key idea: CoroGraph
ØUse both the vertex-centric and partition-centric approaches for
different steps of the algorithm
ØProcess frontiers in priority order using a queue
ØGenerate updates to all neighboring nodes
ØWork-efficiency of vertex-centric frameworks

ØPerform updates to all nodes in a partition (block) at once
ØGather phase, one thread per partition
ØCache-efficiency of partition-centric frameworks
ØNo possibility of parallel writes to the same partition

Multi-level
queue of
frontiers

Pop highest-priority
frontier vertex v

Push message (state of v)
into the corresponding buffer

Global buffers
of messages
for each block

Choose a block to processAdd new frontiers to queue

Multi-level queue of frontiers

Pop highest-
priority frontier

vertex A

Push message
(state of A)

into the
corresponding
buffer for each

neighbor
Choose a block
to process

Add new
frontiers to
queue

Global buffers of messages for each block

Update values
for each vertex

Thread usage
ØA thread pops the top of the frontier queue and conducts scatter
for these frontiers
ØUses a chunk size and local buffers to reduce writes to the global buffers

ØOnce the top-level queue is empty, the thread switches to gather
ØReceives the global message buffer for a particular block
ØProcesses updates for the vertices in that block
ØSingle thread on cache-sized data

ØIn Async mode, some threads are in each mode at any time
ØIn Sync mode, all threads must finish scatter before gather
ØCan use local buffers instead of global buffers

Does this help?
ØSpecifically, is memory bound improved compared to a vertex-centric
framework?
ØA: Not that much

Recall: Coroutines
ØIf we know some information about the workflow, we can do much
better at the software level
ØCoroutines are much faster to switch
Øfunctions with specific suspend and resume points
ØRetains its local variables in allocated memory
ØDo not require a separate call stack

Improvement: using prefetch and coroutines
ØRun two coroutines per thread, where each has a group of vertices
ØAlternate prefetching and computation for the two groups
Ø2 coroutines per thread gives the optimal tradeoff for latency vs switching

overhead

ØDuring gather, the cache is “warmed” by loading vertices
ØAt some point, we want to stop using prefetch/coroutines
ØSwitch after (# of processed vertices) = 1-2x (size of block)
ØAt that point, w.h.p. most vertices are in the cache

Improvement: graph data structure
ØStore edges of low-degree vertices directly in
the offset array
ØSave some lookups/cache misses for the edge array

ØStore edges of high-degree nodes separately
and refer to a piece of that array
ØDo not need to record all edges in the message buffer
ØThese values are distinguished from edge IDs by a bit

ØConversion is linear per graph from CSR format

Now does this help?
ØSpecifically, is memory bound improved compared to a vertex-centric
framework?
ØA: Yes!

Improvement: using prefetch and coroutines
ØSynchronization for writes also causes threads to hang or switch
ØCoroutines can help with this too…
ØSwitch between prefetching data and synchronization

Benchmarking

Parameter tuning

of vertices / block. 218 fits in a 1MB L2 cache

Degree threshold to refer to list of edges (2)

Size of local message buffer

of coroutines per thread (2)

Is CoroGraph faster in practice?

Other comparisons…
ØIs CoroGraph both work-efficient and cache-efficient?
ØYes!

Other comparisons…
ØIs CoroGraph parallelized in practice?
ØYes, but with diminishing returns

Other comparisons…
ØAre all of the optimizations needed?
ØMostly. In fact, most of the improvement comes from them rather
than the core algorithm.

Conclusions
ØCoroGraph combines aspects of vertex-centric and partition-centric
graph frameworks to achieve both work and cache efficiency
ØIn practice, most of the improvements come from additional
optimizations
ØThe core algorithm alone does not clearly outperform others
ØOptimizations include prefetching data in the background, improved data

structures, and optimizing for multi-socket processors

ØCould these optimizations help other frameworks?

