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DAG-based computation model

thread
Each vertex takes one processor one unit of time sl
Each vertex represents an instruction /
Up to two children per vertex spawn f,?r’é‘éd ‘

Up to two parents per vertex

All ancestors must be processed before a vertex may be processed
Work T is total number of nodes block/enable
Span T, is length of longest path



Thread Scheduling on Dedicated Processors

e P processors available
e Lower bounds for runtime are T} /P and T,
e Greedy scheduling achieves runtime of Ty / P + T,



Modifications for multi-programmed machines

Programmer assigns vertices/tasks to processes

Kernel chooses processes to run on processors

Kernel is adversarial, but may have different levels of adversariality
Expected runtime willbe O (T, /Py + T P/ P4)



Difficulties for multi-programmed machines

e May not always have P processors available for use
e Processor availability varies over algorithm runtime L

o If some p;processors are available at each step i, then average availability is  Pa = T Z Pi
e Adversarial kernel may be able to choose whichp; of the P total processes to rin
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Basic bounds for Multi-programmed parallel
processing

Theorem 1. Consider any multithreaded computation with work T and critical-path
length T, ,and any number P of processes. Then for any kernel schedule, every execution
schedule has length at least T,/ P4, where P, is the processor average over the length
of the schedule. In addition, for any number P}, of the form TP /(k + T ) where k is
a nonnegative integer, there exists a kernel schedule such that every execution schedule

has length at least Too P/ P4, where P is the processor average over the length of the
schedule and is in the range I_PAJ < Py < PA.

Theorem 2 (Greedy Schedules). Consider any multithreaded computation with work
T, and critical-path length T.,, any number P of processes, and any kernel schedule.
Any greedy execution schedule has length at most T/ P, + Too(P — 1)/ P4, where Py
is the processor average over the length of the schedule.



Work-Stealing

e Each process maintains a double-ended queue of ready

threads/nodes and an assigned node
o Processes with empty deques and no assigned node are
thieves

e Non-thief processes push/pop from bottom of own
deque

e Thieves pick random deques to pop top until they find
something and are no longer thieves

e Todeal with adversarial kernels, thieves will yield
between steal attempts to restrict kernel behavior

// Assign root node to process zero.
assignedNode ¢+ NIL
if self = processZero

assignedNode ¢« rootNode

// Run scheduling loop.
while computationDone = FALSE

// Execute assigned node.
if assignedNode # NIL

(numChildren, childl, child2) ¢ execute (assignedNode)

if numChildren = 0 17
assignedNode ¢ self.popBottom()

else if numChildren = 1 /7
assignedNode ¢« childl

else /!
self.pushBottom (childl)
assignedNode + child2

// Make steal attempt.

else
yield() 1/
victim ¢ randomProcess() /1
assignedNode ¢ victim.popTop() /7

Terminate or block.
No synchronization.

Enable or spawn.

Yield processor.
Pick victim.
Attempt steal.



Deque semantics

° Ideal semantics: there should exist linearization

times
(@]

(e]

Pick distinct times for each operation between
their start and end times

Return values should be consistent with serial
execution in this order

e Relaxed semantics: there should exist
linearization times, except that popTop may
return NIL even if queue is nonempty if a
different process has just popped the top.

age

bot

void pushBottom (Node node)
1 load localBot ¢ bot
2 store node — deg[localBot]
3 localBot ¢ localBot + 1
4 store localBot — bot

Node popTop ()
1 1load oldAge ¢+ age
load localBot ¢ bot
if localBot < oldAge.top
return NIL
load node ¢« deqgl[oldAge.top]
newAge ¢« oldAge
newAge.top ¢+ newAge.top + 1
cas (age, oldAge, newAge)
if oldAge = newAge
return node
return NIL
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Node popBottom()
1 load localBot ¢« bot
if localBot = 0

2

3 return NIL

4 localBot ¢« localBot — 1
5 store localBot -+ bot

6 load node + deqg[localBot]
7 load oldAge ¢« age

8 4if localBot > oldAge.top
9 return node

10 store 0 — bot

11 newAge.top « 0

12 newAge.tag ¢« oldAge.tag + 1
13 1if localBot = oldAge.top

14 cas (age, oldAge, newAge)
15 if oldAge = newAge
16 return node

17 store newAge — age
18 return NIL



root
thread

Structural Lemma

to be the parent which enables the child.

Lemma: For any deque, the designated parents of the nodes in the
deque (and the assigned node) lie, in top-to-bottom order, on a
root-to-leaf path in the computation. Furthermore, all the parents
are distinct except potentially those of the bottommost node and the
assigned node.

Proof: Induction!

(a)




) = 32w (u)—1 if u is assigned;
@i — 32w otherwise.

Potential ww) = Ts, —d ()

32T 1

D

Let d(u) be the depth of a node in computation

Potential is sum of node potentials for all nodes in all deques
Potential always decreases, is always integral, and ends at zero
By structural lemma, most of the potential of each deque is in the top node of the deque



Runtime analysis

e Split computation into rounds of at least two iterations of the scheduling loop

e Mark scheduled processes as either throws or successes depending on whether or not the second
iteration of each loop is a steal
For S throws the runtime is O (T /P4 + S/ P,)
Within sequences of @ (P) throws, enough steals will succeed in expectation so that total
potential decreases by a constant fraction (for valid yield/kernel pairs)

o Enough non-empty deques are probably targeted by steals to decrease potential

o  Withyields, enough empty-deque processes will have their assigned nodes executed and therefore the
potential will be used

e By Chernoff bounds, at most O((T +1g(1/€))P) throws with high probability



Theorem statements

Lemma 6 (Top-Heavy Deques). Consider any round i and any process q in D;. The
topmost node u in q’s deque contributes at least three-quarters of the potential associated

with q. That is, we have @;(u) > %CD,- (q).

Lemma 7 (Balls and Weighted Bins). Suppose that P balls are thrown independently
and uniformly at random into P bins, where fori = 1, ..., P, bin i has a weight W;.
The total weight is W = Zle W;. For each bin i , define the random variable X; as

W; if some ball lands in bin i
X i — H
0 otherwise.

If X = Zle X;, then for any B in the range 0 < B < 1, we have Pr{X > W} >
1.—1/((1—B)e):
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o  Picks random processes to schedule (a) ()
o  Yield doesn't need to do anything
e Oblivious
o Chooses processes to schedule, but offline
o  Yield requires kernel to schedule a random other process before rescheduling current process, essentially
forcing the kernel to behave benignly for part of the time when processing many throws
e Adaptive

O

O

Chooses processes to schedule, possibly online
Yield forces kernel to schedule every other process before the rescheduling current process




Future work

e Ideal semantics for deque
e Implementation
e Lesspowerful yield for adaptive adversary



