
Thread Scheduling for
Multiprogrammed
Multiprocessors
N.S. Arora, R.D. Blumofe, C.G. Plaxton (2001)

Presented by Jason Liu

DAG-based computation model

● Each vertex takes one processor one unit of time

● Each vertex represents an instruction

● Up to two children per vertex

● Up to two parents per vertex

● All ancestors must be processed before a vertex may be processed

● Work is total number of nodes

● Span is length of longest path

spawn

block/enable

die

Thread Scheduling on Dedicated Processors

● P processors available

● Lower bounds for runtime are and

● Greedy scheduling achieves runtime of

Modifications for multi-programmed machines

● Programmer assigns vertices/tasks to processes

● Kernel chooses processes to run on processors

● Kernel is adversarial, but may have different levels of adversariality

● Expected runtime will be

Difficulties for multi-programmed machines

● May not always have P processors available for use

● Processor availability varies over algorithm runtime
○ If some processors are available at each step i, then average availability is

● Adversarial kernel may be able to choose which of the P total processes to run

Basic bounds for Multi-programmed parallel
processing

Work-Stealing

● Each process maintains a double-ended queue of ready

threads/nodes and an assigned node
○ Processes with empty deques and no assigned node are

thieves

● Non-thief processes push/pop from bottom of own

deque

● Thieves pick random deques to pop top until they find

something and are no longer thieves

● To deal with adversarial kernels, thieves will yield

between steal attempts to restrict kernel behavior

Deque semantics

● Ideal semantics: there should exist linearization
times
○ Pick distinct times for each operation between

their start and end times
○ Return values should be consistent with serial

execution in this order
● Relaxed semantics: there should exist

linearization times, except that popTop may
return NIL even if queue is nonempty if a
different process has just popped the top.

Structural Lemma

For any node in the computation, we can define the designated parent
to be the parent which enables the child.

Lemma: For any deque, the designated parents of the nodes in the
deque (and the assigned node) lie, in top-to-bottom order, on a
root-to-leaf path in the computation. Furthermore, all the parents
are distinct except potentially those of the bottommost node and the
assigned node.

Proof: Induction!

Potential

● Let d(u) be the depth of a node in computation

● Potential is sum of node potentials for all nodes in all deques

● Potential always decreases, is always integral, and ends at zero

● By structural lemma, most of the potential of each deque is in the top node of the deque

Runtime analysis

● Split computation into rounds of at least two iterations of the scheduling loop

● Mark scheduled processes as either throws or successes depending on whether or not the second

iteration of each loop is a steal

● For S throws the runtime is

● Within sequences of throws, enough steals will succeed in expectation so that total

potential decreases by a constant fraction (for valid yield/kernel pairs)
○ Enough non-empty deques are probably targeted by steals to decrease potential

○ With yields, enough empty-deque processes will have their assigned nodes executed and therefore the

potential will be used

● By Chernoff bounds, at most throws with high probability

Theorem statements

Types of adversarial kernels

● Benign
○ Picks random processes to schedule

○ Yield doesn’t need to do anything

● Oblivious
○ Chooses processes to schedule, but offline

○ Yield requires kernel to schedule a random other process before rescheduling current process, essentially

forcing the kernel to behave benignly for part of the time when processing many throws

● Adaptive
○ Chooses processes to schedule, possibly online

○ Yield forces kernel to schedule every other process before the rescheduling current process

Future work

● Ideal semantics for deque

● Implementation

● Less powerful yield for adaptive adversary

