
Multicore Triangle Computations
Without Tuning

Julian Shun and Kanat Tangwongsan

Presentation is based on paper published in International
Conference on Data Engineering (ICDE), 2015 1

• Triangle Counting

• Other variants:
• Triangle listing
• Local triangle counting/clustering coefficients
• Triangle enumeration
• Approximate counting
• Analogs on directed graphs

• Numerous applications…
• Social network analysis, Web structure, spam detection, outlier

detection, dense subgraph mining, 3-way database joins, etc.

2

Triangle Computations

Alice Bob

Carol David

Eve

Fred Greg

Hannah

✔
✔

✔

Count = 3

Need fast triangle computation algorithms!

• Sequential algorithms for exact counting/listing
• Naïve algorithm of trying all triplets

 O(V3) work
• Node-iterator algorithm [Schank]

 O(VE) work
• Edge-iterator algorithm [Itai-Rodeh]

 O(VE) work
• Tree-lister [Itai-Rodeh], forward/compact-forward [Schank-Wagner,

Lapaty]
 O(E1.5) work

• Sequential algorithms via matrix multiplication
• O(V2.37) work compute A3, where A is the adjacency matrix
• O(E1.41) work [Alon-Yuster-Zwick]
• These require superlinear space

3

Sequential Triangle Computation
Algorithms V = # vertices E = # edges

4

Sequential Triangle Computation
Algorithms

What about parallel algorithms?

Source: “Algorithmic Aspects of Triangle-Based Network
Analysis”, Dissertation by Thomas Schank

• Most designed for distributed memory
• MapReduce algorithms [Cohen ’09, Suri-Vassilvitskii ‘11, Park-

Chung ‘13, Park et al. ‘14]
• MPI algorithms [Arifuzzaman et al. ‘13, Graphlab]

5

Parallel Triangle Computation Algorithms

• What about shared-memory multicore?
• Multicores are everywhere!
• Node-iterator algorithm [Green et al. ‘14]

• O(VE) work in worst case

• Can we obtain an O(E1.5) work shared-memory multicore
algorithm?

6

Triangle Computation:
Challenges for Shared Memory Machines

Irregular
computation

1 Deep memory
hierarchy

2

• All previous algorithms are sequential
• External-memory (cache-aware) algorithms
• Natural-join O(E3/(M2 B)) I/O’s
• Node-iterator [Dementiev ’06] O((E1.5/B) logM/B(E/B)) I/O’s
• Compact-forward [Menegola ‘10] O(E + E1.5/B) I/O’s
• [Chu-Cheng ’11, Hu et al. ‘13] O(E2/(MB) + #triangles/B) I/O’s

• External-memory and cache-oblivious
• [Pagh-Silvestri ‘14] O(E1.5/(M0.5 B)) I/O’s or cache misses

• Parallel cache-oblivious algorithms?

7

External-Memory and Cache-Oblivious
Triangle Computation

8

Algorithm Work Depth Cache Complexity
TC-Merge O(E1.5) O(log2 E) O(E + E1.5/B)
TC-Hash O(V log V + αE) O(log2 E) O(sort(V) + αE)
Par. Pagh-Silvestri O(E1.5) O(log3 E) O(E1.5/(M0.5 B))

1
Our Contributions

Parallel Cache-Oblivious Triangle Counting Algs

2

Extensive Experimental Study3

Extensions to Other Triangle Computations:
Enumeration, Listing, Local Counting/Clustering Coefficients,
Approx. Counting, Variants on Directed Graphs

V = # vertices E = # edges α = arboricity (at most E0.5)
M = cache size B = line size sort(n) = (n/B) logM/B(n/B)

Sequential Triangle Counting (Exact)
9

1 32

0

4

Rank vertices by degree (sorting)
Return A[v] for all v storing higher
ranked neighbors

for each vertex v:
 for each w in A[v]:
 count += intersect(A[v], A[w])

Work = O(E1.5)
[Schank-Wagner ‘05, Latapy ‘08]

Gives all triangles (v, w, x) where
rank(v) < rank(w) < rank(x)

1

2

(Forward/compact-forward algorithm)

Proof of O(E1.5) work bound when intersect
uses merging

10

1 32

0

4

Rank vertices by degree (sorting)
Return A[v] for all v storing higher
ranked neighbors

for each vertex v:
 for each w in A[v]:
 count += intersect(A[v], A[w])

• Step 1: O(E+V log V) work
• Step 2:

• For each edge (v,w), intersect does O(d+(v) + d+(w)) work
• For all v, d+(v) ≤ 2E0.5

• If d+(v) > 2E0.5, each of its higher ranked neighbors also
have degree > 2E0.5 and total number of directed edges >
4E, a contradiction

• Total work = E * O(E0.5) = O(E1.5)

1

2

Parallel Triangle Counting (Exact)
11

Rank vertices by degree (sorting)
Return A[v] for all v storing higher
ranked neighbors

for each vertex v:
 for each w in A[v]:
 count += intersect(A[v], A[w])

Parallel sort
and filter

parallel_
parallel_

Parallel reduction

Parallel merge (TC-Merge)
or

Parallel hash table (TC-Hash)

1

2

Step 1
Work = O(E+V log V)
Depth = O(log2 V)
Cache = O(E+sort(V))

parfor v ∈ V

parfor w ∈ A[0]
parfor w ∈ A[1]

parfor w ∈ A[2]
parfor w ∈ A[3]

parfor w ∈ A[4]

v = 0
v = 1

v = 2 v = 3 v = 4

intersect((A [0], A [1])+ +

intersect((A [0], A [3])+ +
intersect((A [2], A [1])+ +

intersect((A [3], A [1])+ +

intersect((A [4], A [1])+ +

intersect((A [4], A [3])+ +
safe to

run all in
parallel

TC-Merge and TC-Hash Details
12

for each vertex v:
 for each w in A[v]:
 count += intersect(A[v], A[w])

parallel_
parallel_

Parallel reduction

Parallel merge (TC-Merge)
or

Parallel hash table (TC-Hash)

Step 2: TC-Merge
Work = O(E1.5)
Depth = O(log2 E)
Cache = O(E+E1.5/B)

2

Step 2: TC-Hash
Work = O(αE)
Depth = O(log E)
Cache = O(αE)

• TC-Merge
• Preprocessing: sort adjacency lists
• Intersect: use a parallel and cache-oblivious merge based on divide-

and-conquer [Blelloch et al. ‘10, Blelloch et al. ‘11]
• TC-Hash
• Preprocessing: for each vertex, create parallel hash table storing

edges [Shun-Blelloch ‘14]
• Intersect: scan smaller list, querying hash table of larger list in parallel

(α = arboricity (at most E0.5))

13

Algorithm Work Depth Cache Complexity
TC-Merge O(E1.5) O(log2 E) O(E + E1.5/B) (oblivious)
TC-Hash O(V log V + αE) O(log2 E) O(sort(V) + αE) (oblivious)
Par. Pagh-Silvestri O(E1.5) O(log3 E) O(E1.5/(M0.5 B)) (oblivious)
Chu-Cheng ‘11,
Hu et al. ‘13

O(E log E + E2/M
+ αE)

O(E2/(MB) + #triangles/B)
(aware)

Pagh-Silvestri ‘14 O(E1.5) O(E1.5/(M0.5 B)) (oblivious)
Green et al. ’14 O(VE) O(log E)

Comparison of Complexity Bounds

V = # vertices E = # edges α = arboricity (at most E0.5)
M = cache size B = line size sort(n) = (n/B) logM/B(n/B)

14

Algorithm Work Depth Cache Complexity
TC-Merge O(E1.5) O(log2 E) O(E + E1.5/B)
TC-Hash O(V log V + αE) O(log2 E) O(sort(V) + αE)
Par. Pagh-Silvestri O(E1.5) O(log3 E) O(E1.5/(M0.5 B))

1
Our Contributions

Parallel Cache-Oblivious Triangle Counting Algs

Extensive Experimental Study3

V = # vertices E = # edges α = arboricity (at most E0.5)
M = cache size B = line size sort(n) = (n/B) logM/B(n/B)

2 Extensions to Other Triangle Computations:
Enumeration, Listing, Local Counting/Clustering Coefficients,
Approx. Counting, Variants on Directed Graphs

Extensions of Exact Counting Algorithms
15

• Triangle enumeration
• Call emit function whenever triangle is found
• Listing: add to hash table to list; return contents at the end
• Local counting/clustering coefficients: atomically increment

count of three triangle endpoints
• Directed triangle counting/enumeration
• Keep separate counts for different types of triangles

• Approximate counting
• Use colorful triangle sampling scheme to create smaller sub-graph

[Pagh-Tsourakakis ‘12]
• Run TC-Merge or TC-Hash on sub-graph with pE edges (0 < p < 1)

and return #triangles/p2 as estimate

Approximate Counting
16

• Colorful triangle counting [Pagh-Tsourakakis ’12]

Assign random color in {1, …, 1/p}
to each vertex 1

Sampling: Keep edges whose
endpoints have the same color 2

Run exact triangle counting on
sampled graph, return Δsampled/p2 3

Parallel scan

Parallel filter

Use TC-Merge
or TC-Hash

Steps 1 & 2
Work = O(E)
Depth = O(log E)
Cache = O(E/B)

Step 3: TC-Merge
Work = O((pE)1.5)
Depth = O(log2 E)
Cache = O(pE+(pE)1.5/B)

Step 3: TC-Hash
Work = O(V log V + αpE)
Depth = O(log E)
Cache = O(sort(V)+pαE)

Expected # edges = pE

Sampling rate: 0 < p < 1

17

Algorithm Work Depth Cache Complexity
TC-Merge O(E1.5) O(log2 E) O(E + E1.5/B)
TC-Hash O(V log V + αE) O(log2 E) O(sort(V) + αE)
Par. Pagh-Silvestri O(E1.5) O(log3 E) O(E1.5/(M0.5 B))

1
Our Contributions

Parallel Cache-Oblivious Triangle Counting Algs

Extensive Experimental Study3

V = # vertices E = # edges α = arboricity (at most E0.5)
M = cache size B = line size sort(n) = (n/B) logM/B(n/B)

2 Extensions to Other Triangle Computations:
Enumeration, Listing, Local Counting/Clustering Coefficients,
Approx. Counting, Variants on Directed Graphs

Experimental Setup
18

• Implementations using Intel Cilk Plus
• 40-core Intel Nehalem machine (with 2-way hyper-threading)
• 4 sockets, each with 30MB shared L3 cache, 256KB private L2 caches

• Sequential TC-Merge as baseline (faster than existing
sequential implementations)

• Other multicore implementations: Green et al. and GraphLab
• Our parallel Pagh-Silvestri algorithm was not competitive
• Variety of real-world and artificial graphs

Both TC-Merge and TC-Hash scale well
with # of cores:

19

LiveJournal
4M vtxes, 34.6M edges

~ 27x ~ 48x

Orkut
3M vtxes, 117M edges

40-core (with hyper-threading) Performance
20

0
5

10
15
20
25
30
35
40
45
50

ran
do

m (V
=10

0M
, E

=5
00

M)

rM
at

(V
=1

34
M, E

=5
00

M)

3D
-gr

id
(V

=1
00

M, E
=3

00
M)

so
c-L

J (
V=5

M, E
=4

3M
)

Pate
nts

 (V
=3.7

M, E
=1

7M
)

co
m-LJ

 (V
=4

M, E
=3

5M
)

Orku
t (V

=3
M, E

=1
17

M)

Sp
ee

du
p

ov
er

se

qu
en

tia
l T

C
-M

er
ge

TC-Merge
TC-Hash
Green et al.
GraphLab

• TC-Merge always faster than TC-Hash (by 1.3—2.5x)
• TC-Merge always faster than Green et al. or GraphLab

(by 2.1—5.2x)

Why is TC-Merge faster than TC-Hash?
21

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

Running
Time

L3 Cache
Misses

L2 Cache
Missses

Ops for
Intersect

N
or

m
al

iz
ed

 to
 T

C
-M

er
ge

soc-LJ

TC-Merge

TC-Hash

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

Running
Time

L3 Cache
Misses

L2 Cache
Misses

Ops for
Intersect

Orkut

• TC-Hash less cache-efficient than TC-Merge
• Running time more correlated with cache misses than work

Comparison to existing counting algs.
22

0 2 4 6 8 10 12 14 16 18 20

TC-Merge (40 cores)

GraphLab (40 cores)

GraphLab (MPI, 64 nodes, 1024 cores)

PATRIC (MPI, 1200 cores)

Park and Chung (MapReduce, 47 nodes)

Suri and Vassilvitskii (MapReduce, 1636 nodes)

Minutes

Twitter graph (41M vertices, 1.2B undirected edges, 34.8B triangles)

(213 minutes)

(423 minutes)

• Yahoo graph (1.4B vertices, 6.4B edges, 85.8B triangles)
on 40 cores: TC-Merge takes 78 seconds
– Approximate counting algorithm achieves 99.6% accuracy in 9.1

seconds

Shared vs. distributed memory costs

• Amazon EC2 pricing
• Captures purchasing costs, maintenance/operating

costs, energy costs

23

Triangle Counting
(Twitter)

Our algorithm GraphLab GraphLab

Running Time 0.932 min 3 min 1.5 min
Machine 40-core (256

GB memory)
40-core (256 GB
memory)

64 x 16-core

Approx. EC2 pricing < $4/hour < $4/hour 64 x $0.928/hour
Overall cost < $0.062 < $0.2 $1.49

Approximate counting
24

p=1/25 Accuracy Tapprox Tapprox/Texact
Orkut (V=3M, E=117M) 99.8% 0.067sec 0.035
Twitter (V=41M, E=1.2B) 99.9% 2.4sec 0.043
Yahoo (V=1.4B, E=6.4B) 99.6% 9.1sec 0.117

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.1 0.2 0.3 0.4 0.5

soc-LJ
com-LJ

Orkut

p

Tapprox/Texact

• Simple multicore algorithms for triangle computations are
provably work-efficient, low-depth, and cache-efficient

• Implementations require no load-balancing or tuning for
cache

• Experimentally outperforms existing multicore and
distributed algorithms

• Future work: Design a practical parallel algorithm
achieving O(E1.5/(M0.5 B)) cache complexity

25

Conclusion
Algorithm Work Depth Cache Complexity
TC-Merge O(E1.5) O(log2 E) O(E + E1.5/B)
TC-Hash O(V log V + αE) O(log2 E) O(sort(V) + αE)
Par. Pagh-Silvestri O(E1.5) O(log3 E) O(E1.5/(M0.5 B))

