Multicore Triangle Computations
Without Tuning

Julian Shun and Kanat Tangwongsan

Presentation is based on paper published in International
Conference on Data Engineering (ICDE), 2015

Triangle Computations

- Triangle Counting Carol J David
Count = 3 \ /\/\
: Al Bob E
- Other variants: = ° =
- Triangle listing \
- Local triangle counting/clustering coefficients Fred Greg

- Triangle enumeration \\//

- Approximate counting Hannah
- Analogs on directed graphs

- Numerous applications...

- Social network analysis, Web structure, spam detection, outlier
detection, dense subgraph mining, 3-way database joins, etc.

Need fast triangle computation algorithms!

3
Sequential Triangle Computation

AlgOrlth ms V = # vertices E = # edges

- Sequential algorithms for exact counting/listing
- Naive algorithm of trying all triplets
O(V?3) work

- Node-iterator algorithm [Schank]
O(VE) work

- Edge-iterator algorithm [ltai-Rodeh]
O(VE) work

- Tree-lister [ltal-Rodeh], forward/compact-forward [Schank-\Wagner,
Lapaty]

O(E'>) work
- Sequential algorithms via matrix multiplication

- O(V?237) work compute A3, where A is the adjacency matrix
- O(E"4") work [Alon-Yuster-Zwick]
- These require superlinear space

- s
Sequential Triangle Computation

Algorlthl I lS Source: “Algorithmic Aspects of Triangle-Based Network

Analysis”, Dissertation by Thomas Schank

core forward-hashed
ayz using fast T /
2\ | matrix- \ 0 (m3/ 2)
o (m7+) - multiplication T listing-ayz (fjsglvl;?zt hashed
fast matrix-
O (n7) multiplication

counting algorithms listing algorithms

What about parallel algorithms?

5
Parallel Triangle Computation Algorithms

- Most designed for distributed memory

- MapReduce algorithms [Cohen 09, Suri-Vassilvitskii “11, Park-
Chung ‘13, Park et al. “14]

- MPI algorithms [Arifuzzaman et al. “13, Graphlab]

- What about shared-memory multicore?
- Multicores are everywhere!
- Node-iterator algorithm [Green et al. 14|
- O(VE) work in worst case

- Can we obtain an O(E'-°) work shared-memory multicore
algorithm?

5
Triangle Computation:

Challenges for Shared Memory Machines

Irreqular
computation

Deep memory
hierarchy

Memory: upto 1 TB

4 of these
24 MB L3 24 MB

105 =

«— «—
10 F . 8 of these 8 of these

128KB | | 128KB | L2 | 128KB | | 128 KB
0% y I I I I
- : 32KB| [32KB| L1 [32KB| |32KB

1 J PR PR TP [P [
10
10° 10" 102 1¢° 10° 10° 10° 10’ 10® 10° ®» @ ®» @

External-Memory and Cache-Oblivious
Triangle Computation

- All previous algorithms are sequential
- External-memory (cache-aware) algorithms

- Natural-join O(E3/(M?B)) I/O’s
- Node-iterator [Dementiev '06] O((E">/B) logy,s(E/B)) I/O’s
- Compact-forward [Menegola “10] O(E + E'3/B) I/O’s
 [Chu-Cheng ’11, Hu et al. ‘13] O(E?/(MB) + #triangles/B) I/O’s
- External-memory and cache-oblivious
- [Pagh-Silvestri ‘14] O(E"5/(M?-° B)) I/O’s or cache misses

- Parallel cache-oblivious algorithms?

B
Our Contributions

c Parallel Cache-Oblivious Triangle Counting Algs

Algorithm Ce~he Complexity
< TC-Merge O(E"5) O(log2 E) O(E + E'5/B) =~
= TC-Hash O(VlogV +aE) O(log?E O(sort(V) + -
TC:Has — (09_0(_) (log)_(SO() + B
Par. Pagh-Silvestri O(ET)" “O({6gE) = O(E'5/(M°5 B))
V = # vertices E = # edges a = arboricity (at most E%°)
M = cache size B = line size sort(n) = (n/B) logms(n/B)

6 Extensions to Other Triangle Computations:

Enumeration, Listing, Local Counting/Clustering Coefficients,
Approx. Counting, Variants on Directed Graphs

e Extensive Experimental Study

Sequential Triangle Counting (Exact)

(Forward/compact-forward algorithm)

Rank vertices by degree (sorting) c
O Return A[v] for all v storing higher

; ranked neighbors
(2)— (D3

' for each vertex v: a

(4) for each w in A|v]:
count += intersect(A[v], A[w])

Gives all triangles (v, w, xX) where
rank(v) < rank(w) < rank(x)

Work = O(E"-9)
[Schank-Wagner ‘05, Latapy ‘08]

Proof of O(E'~) work bound when intersect

uses merging Rank vertices by degree (sorting) c
' Return Alv] for all v storing higher

ranked neighbors

(2)—(1)—3)
' for each vertex v:
(4) for each w in A|v]: Q

count += intersect(A[v], A[fw])

« Step 1: O(E+V log V) work
« Step 2:
 For each edge (v,w), intersect does O(d*(v) + d*(w)) work
« Forallv, d*(v) < 2E%°
« Ifd*(v) > 2E%, each of its higher ranked neighbors also
have degree > 2E%> and total number of directed edges >

4E, a contradiction
« Total work = E * O(E®®) = O(E")

Parallel Triangle Counting (Exact)

Step 1

Work = O(E+V log V)
Depth = O(log? V)
Cache = O(E+sort(V)) | Rank vertices by degree (sorting)

Parallel sort ‘ Return A[v] for all v storing higher c
and filter ranked neighbors

parallel_for each w in A[v]:
count += intersect(A[v], A[w])

parallel for each vertex v: Q

Parallel reduction

parforve V
v=0 \
v=1 v=3 v=4
parfor w € A[0] v=2"" parfor w € A[4]
parfor w € A[1] parfor w € A[3] arallel merge (TC-Merge)

- parfor w € A[2] intersect(A74], A'1]) Gdfe to
intersect(A'0], A'[1]) intersect(A2],AT1]) interfetkAHEY BIY 'l@l@"é“(TC-HaSh)

intersect (470], A3]) intersect (A3], A1]) parallel

. S
TC-Merge and TC-Hash Details

parallel _for each vertex v:

parallel_for each w in A[v]: g
Parallel reduction ‘ count += intersect(A[v], A[w])

Step 2: TC-Merge Step 2: TC-Hash t

Work = O(E™*) Work = O(aE) Parallel merge (TC-Merge)
Depth = O(log? E) Depth = O(log E) or

Cache = O(E+E™*/B) || Cache = O(aE) Parallel hash table (TC-Hash)

¢ TC-Merge (a = arboricity (at most E©9))

- Preprocessing: sort adjacency lists

- Intersect: use a parallel and cache-oblivious merge based on divide-
and-conquer [Blelloch et al. “10, Blelloch et al. "11]

- TC-Hash

- Preprocessing: for each vertex, create parallel hash table storing
edges [Shun-Blelloch ‘14]

- Intersect: scan smaller list, querying hash table of larger list in parallel

Comparison of Complexity Bounds

o ———— —
Algorithm Work Depth Cache Complexity
TC-Merge O(E"5) O(log? E) | O(E + E'-%/B) (oblivious)
TC-Hash O(VlogV +aE) Of(log? E) | O(sort(V) + aE) (oblivious)
Par. Pagh-Silvestri O(E"5) O(log® E) | O(E"-%/(M9-5 B)) (oblivious)
Chu-Cheng “11, O(E log E + E2/M I O(E2/(MB) + #triangles/B)
Hu et al. ‘13 + aE) (aware)
Pagh-Silvestri ‘14 O(E"9) \O (E">/(MO> B)) (oblivious) ,
Green et al. 14 O(VE) (logg) ~ — — — ——

V = # vertices E = # edges a = arboricity (at most E%°)

M = cache size B = line size sort(n) = (n/B) logyg(n/B)

.
Our Contributions

0 Parallel Cache-Oblivious Triangle Counting Algs

Algorithm T wepii Ce~he Complexity
< TC-Merge O(E"5) O(log2 E) O(E + E'5/B) =~
= TC-Hash O(VlogV +aE) O(log?E + -
TC:Has — (09_0(_) (log E) O(sort(V) + aE)
Par. Pagh-Silvestri O(ET)" D663 E) ~ O(E"5/(M05 B))
V = # vertices E = # edges a = arboricity (at most E%°)
M = cache size B = line size sort(n) = (n/B) logyg(n/B)

Exteusions to Other-Trmngle-Compitatious.

Enumeration, Listing, Local Counting/Clustering Coeﬁfzcze\tS)
~Approx. Countzng, Variants on Directed Graphs

’
—’
'———————'—

@ Extensive Experimental Study

S
Extensions of Exact Counting Algorithms

- Triangle enumeration
- Call emit function whenever triangle is found
- Listing: add to hash table to list; return contents at the end

- Local counting/clustering coefficients: atomically increment
count of three triangle endpoints

- Directed triangle counting/enumeration
- Keep separate counts for different types of triangles

- Approximate counting

- Use colorful triangle sampling scheme to create smaller sub-graph
[Pagh-Tsourakakis ‘12]

- Run TC-Merge or TC-Hash on sub-graph with pE edges (0 <p <1)
and return #triangles/p? as estimate

N, L
Approximate Counting pected # edges = pE

- Colorful triangle counting [Pagh-Tsourakakis "12]

Sampling rate: 0 <p < 1
Assign random color in {1, ..., 1/p} c

Parallel scan ‘ to each vertex
| Sampling: Keep edges whose !
Parallel filter ‘ endpoints have the same color a

Use TC-Merge Run exact triangle counting on
‘ sampled graph, return Agampied/P?

or TC-Hash

Steps 1 & 2 Step 3: TC-Merge Step 3: TC-Hash

Work = O(E) Work = O((pE)'-°) Work = O(V log V + apE)
Depth = O(log E) Depth = O(log? E) Depth = O(log E)

Cache = O(E/B) Cache = O(pE+(pE)'-°/B) Cache = O(sort(V)+paE)

Our Contributions

0 Parallel Cache-Oblivious Triangle Counting Algs

Algorithm Work Depth Cache Complexity
TC-Merge O(E"9) O(log2E) O(E + E'5/B)
TC-Hash O(VlogV +aE) O(log2E) O(sort(V) + aE)
Par. Pagh-Silvestri O(E"9) O(log3 E) O(E'%/(MO%> B))

V = # vertices E = # edges a = arboricity (at most E%°)
M = cache size B = line size sort(n) = (n/B) logyg(n/B)

) Fxteusions tr@‘th'er‘ﬁmwg'lﬁmmﬁatwﬂ& -~
Enumeration, Listing, Local Counting/Clustering Coefficients)

“Apprax. Counting, Variants qu Directed Graphs _——

—— T T T T
’ \

Q’Extensive Experimental Study
S

\
— — —\—
——-————_—_'—

\

\ /

—

.
Experimental Setup

- Implementations using Intel Cilk Plus

- 40-core Intel Nehalem machine (with 2-way hyper-threading)
- 4 sockets, each with 30MB shared L3 cache, 256KB private L2 caches

- Sequential TC-Merge as baseline (faster than existing
sequential implementations)

- Other multicore implementations: Green et al. and GraphLab
- Our parallel Pagh-Silvestri algorithm was not competitive
- Variety of real-world and artificial graphs

Both TC-Merge and TC-Hash scale well

with # of cores:

0.1

LiveJournal
4M vixes, 34.6M edges

1000

1 1 1 1 1 1
1 2 4 8 16 3240 40h

Orkut
SM vixes, 117M edges

. R
40-core (with hyper-threading) Performance

50

45

40

35

30 -
25 -

20 -

15 -

10 -

Speedup over

sequential TC-Merge

m TC-Merge
m TC-Hash

m Green et al.
m GraphLab

- TC-Merge always faster than TC-Hash (by 1.3—2.5x)
- TC-Merge always faster than Green et al. or GraphLab

(by 2.1—5.2x)

.
Why is TC-Merge faster than TC-Hash??

soc-LJ Orkut

2.5 ;
o 4 m TC-Merge 1.8
— 1.6 1.6
y 1.4 1.4
O - -
=12 mTC-Hash 1.2
-8 1 1 -
© i
S 0.8 0.8
N 0.6 0.6 -
® 0.4 0.4 -
- 0.2 -
o) 0.2)
Z 0 0 -

Running L3 Cache L2 Cache # Ops for Running L3 Cache L2 Cache # Ops for

Time Misses Missses Intersect Time Misses Misses Intersect

- TC-Hash less cache-efficient than TC-Merge
- Running time more correlated with cache misses than work

I S
Comparison to existing counting algs.

Twitter graph (41M vertices, 1.2B undirected edges, 34.8B triangles)

* Yahoo graph (1.4B vertices, 6.4B edges, 85.8B triangles)
on 40 cores: TC-Merge takes 78 seconds

— Approximate counting algorithm achieves 99.6% accuracy in 9.1
seconds

Shared vs. distributed memory costs

- Amazon EC2 pricing

- Captures purchasing costs, maintenance/operating
costs, energy costs

Triangle Counting Our algorithm GraphlLab GraphLab

(Twitter)

Machine

40-core (256 40-core (256 GB 64 x 16-core
GB memory) memory)

Overall cost

. S
Approximate counting

0-5 ! ! ! |

o4 PRty

0.3

Tapproxl Texact
0.2
0.1
0
0 0.1 0.2 0.3 0.4 0.5
p

p=1/25 Accuracy | Tipprox Tapprox! Texact
Orkut (V=3M, E=117M) 99.8% 0.067sec 0.035
Twitter (V=41M, E=1.2B) | 99.9% 2.4sec 0.043
Yahoo (V=1.4B, E=6.4B) | 99.6% 9.1sec 0.117

Conclusion

Algorithm Work Depth Cache Complexity
TC-Merge O(E"9) O(log2E) O(E + E'5/B)
TC-Hash O(VlogV +aE) O(log2E) O(sort(V) + aE)
Par. Pagh-Silvestri O(E"9) O(log3 E) O(E'5/(M%> B))

- Simple multicore algorithms for triangle computations are
provably work-efficient, low-depth, and cache-efficient

- Implementations require no load-balancing or tuning for
cache

- Experimentally outperforms existing multicore and
distributed algorithms

- Future work: Design a practical parallel algorithm
achieving O(E'-5/(M%> B)) cache complexity

