
Cache Oblivious Stencil
Computations

(2005)
Written by: Matteo Frigo and Volker Strumpen

Presentation by: Ricardo Gayle Jr.

What is a stencil?
● A computation that updates elements of an array or grid

according to some fixed pattern
○ The pattern is described as a computational kernel

● The stencil defines what an element is at time t as a function
of other elements at time t - 1,...,t - k

● Can be applied to any n-dimensional grid
● When we include a time dimension, we have a

(n+1)-dimensional spacetime grid
○ Every spacetime point, except for initial and boundary

values, are computed by the computational kernel

Stencil computations and Caches
● A stencil computation is any

traversal of spacetime that

respects data dependencies of

the stencil

● Simplest computes all points

at t before any of t+1

● If |p| > cache size, cache

misses proportional to |p|

● Storing a bounded number of
time steps per space point is
usually sufficient, rather than the
entire spacetime

● This idea used create a
cache-oblivious algorithm

● Cache-oblivious means the
algorithm does not know cache
size but uses cache optimally

What’s so special?
Well, the fact that it’s not

One-dimensional
Stencil Algorithm
● 3-point stencil
● Base Case: if height == 1

○ Call kernel on all points
● If width > 2 * height *σ :

○ Space cut
■ Cut ensures each

subproblem is a valid,
non-empty trapezoid

● Else:
○ Time cut

● The traversal is valid because no
points in T

1
 depends on T

2
, so it

follows stencil dependencies!

Multi-dimensional Algorithm

● Allow any stencil where spacetime point (t + 1, x) can be
dependent on all points (t, x + k) where |k| ≤ σ

● Arbitrary-dimensional space time
● Idea: “Informally, for each dimension i, the projection of

the multi-dimensional trapezoid onto the (t, x(i)) plane
looks like the 1-dimensional trapezoid”

● Perform space cuts in any dimension that allows it; time
cut otherwise

Cache Complexity
● We assume that the kernel operates

“in-place”, the cache is “ideal” and
the trapezoid is larger than the
cache
○ “In-place” kernels are very

common
○ Fully associative, optimal

replacement, cache of two
level memory system

● Lemma 1: For trapezoid T, let m be
the minimum width in any
dimension divided by 2. There are
O((1+n)Vol(T)/m) points on the
surface

● Theorem 2: On an ideal cache of
size Z and a “large” trapezoid, the
algorithm incurs O(Vol(T)/Z1/n)
cache misses, as opposed to
O(Vol(T)).
○ When a subproblem S gets

small enough, it incurs
O(Vol(S)) cache misses

○ Because of how we divide to
get S, there are bounds on
the height of S which allow
for O(Vol(S)/Z1/n) cache
misses per subproblem

Questions and Comments?

