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What is a stencil?
● A computation that updates elements of an array or grid 

according to some fixed pattern
○ The pattern is described as a computational kernel

● The stencil defines what an element is at time t as a function 
of other elements at time t - 1,...,t - k

● Can be applied to any n-dimensional grid
● When we include a time dimension, we have a 

(n+1)-dimensional spacetime grid
○ Every spacetime point, except for initial and boundary 

values, are computed by the computational kernel



Stencil computations and Caches
● A stencil computation is any 

traversal of spacetime that 

respects data dependencies of 

the stencil

● Simplest computes all points 

at t before any of t+1

● If |p| > cache size, cache 

misses proportional to |p|

● Storing a bounded number of 
time steps per space point is 
usually sufficient, rather than the 
entire spacetime

● This idea used create a 
cache-oblivious algorithm

● Cache-oblivious means the 
algorithm  does not know cache 
size but uses cache optimally



What’s so special?
Well, the fact that it’s not



One-dimensional 
Stencil Algorithm
● 3-point stencil
● Base Case: if height == 1

○ Call kernel on all points
● If width > 2 * height *σ :

○ Space cut
■ Cut ensures each 

subproblem is a valid, 
non-empty trapezoid

● Else:
○ Time cut

● The traversal is valid because no 
points in T

1
 depends on T

2
, so it 

follows stencil dependencies!



Multi-dimensional Algorithm

● Allow any stencil where spacetime point (t + 1, x) can be 
dependent on all points (t, x + k) where |k| ≤ σ

● Arbitrary-dimensional space time
● Idea: “Informally, for each dimension i, the projection of 

the multi-dimensional trapezoid onto the (t, x(i)) plane 
looks like the 1-dimensional trapezoid”

● Perform space cuts in any dimension that allows it; time 
cut otherwise



Cache Complexity
● We assume that the kernel operates 

“in-place”, the cache is “ideal” and 
the trapezoid is larger than the 
cache
○ “In-place” kernels are very 

common
○ Fully associative, optimal 

replacement, cache of two 
level memory system

● Lemma 1: For trapezoid T, let m be 
the minimum width in any 
dimension divided by 2. There are 
O((1+n)Vol(T)/m) points on the 
surface

● Theorem 2: On an ideal cache of 
size Z and a “large” trapezoid, the 
algorithm incurs O(Vol(T)/Z1/n) 
cache misses, as opposed to 
O(Vol(T)).
○ When a subproblem S gets 

small enough, it incurs 
O(Vol(S)) cache misses

○ Because of how we divide to 
get S, there are bounds on 
the height of S which allow 
for O(Vol(S)/Z1/n) cache 
misses per subproblem



Questions and Comments?


