Practical Parallel
Hypergraph Algorithms

Julian Shun

Graphs

@ . @

- Vertices model objects
- Edges model relationships between objects

- Applications: social networks, biological networks,
Web, scientific computing, etc.

- Lots of research on high-performance parallel
graph algorithms, frameworks, and libraries

. R
Some graph processing solutions

Pregel, Giraph, GPS, GraphLab, PowerGraph, PRISM, Pegasus, Knowledge Discovery
Toolbox, CombBLAS, GraphChi, GraphX, Galois, X-Stream, Gunrock, GraphMat, Ringo,
TurboGraph, TurboGraph++, FlashGraph, Grace, PathGraph, Polymer, GPSA, GoFFish,
Blogel, LightGraph, MapGraph, PowerLyra,Graphine, PowerSwitch, Imitator, XDGP,
Signal/Collect, PrefEdge, EmptyHeaded, Gemini, Wukong, Parallel BGL, KLA, Grappa,
Chronos, Green-Marl, GraphHP, P++, LLAMA, Venus, Cyclops, Medusa, NScale, Neo4J,
Trinity, GBase, RADAR, HyperGraphDB, Horton, GSPARQL, Titan, ZipG, Cagra, Milk,
Ligra, Ligra+, Lux, Julienne, GraphPad, Mosaic, GraFBoost, Graphene, Mizan, Green-
Marl, PGX, PGX.D, Wukong+S, Stinger, cuStinger, Distinger, Hornet, Graphln, Tornado,
Bagel, KickStarter, Naiad, Kineograph, GraphMap, Presto, Cube, Giraph++, HATS,
Photon, TuX2, GRAPE, GraM, Congra, MTGL, GridGraph, NXgraph, Chaos, Mmap,
Clip, Floe, GraphGrind, DualSim, ScaleMine, Arabesque, GraMi, SAHAD, TAO, Weaver,
G-SQL, G-SPARQL, gStore, Horton+, S2RDF, Quegel, EAGRE, Shape, RDF-3X, CuSha,
Garaph, Totem, GTS, Frog, GBTL-CUDA, Graphulo, Zorro, Coral, CelllQ, GraphTau,
Wonderland, GraphP, SAGE, Laika, nvGRAPH, cuGraph, Graphlt, GraPu, GraphJet,
ImmortalGraph, LA3, Kaskade, AsyncStripe, Cgraph, GraphD, GraphH, ASAP, RStream,
Automine, GraphOne, Aspen, GBBS, Gluon, Gswitch, SEP-Graph, SIMD-X, PnP,
GraphA, Phoenix, Pregelix, ShenTu, Nepal, GraphSSD, LCC-Graph, RealGraph, Sedge,
GraphMP, Tigr, PartitionedVC, DiGraph, Abelian, faimGraph, Falcon, Puffin, GraphBolt,
GPOP, Omega, Slim graph, Log(Graph), RADS, CECI, BENU, GraphM, LIGHT, Pragh,
Helios, GraphRex, Graphflow, MAGIQ, GAPBS, Wukong+G, GraphFrames, G-CORE,
gRouting, Groute, TripleBit, SQLGraph, Graphphi, TuFast, Kaskade, etc.

Hypergraphs

- Hyperedges can connect g @

more than two vertices

- Captures more information
than a graph representation

- Some applications:

- Improved accuracy in image segmentation and spectral
clustering [Zhou et al. 2006, Ducournau and Bretto
2014, Ding and Yilmaz 2008]

- Better community detection [Bothorel and Bouklit 2011,
Roy and Ravindran 20135]

- Designing lookup tables, low-density parity-check codes
[Jiang et al. 2017]

- Satisfiability of Boolean formulas [Karp et al. 1988]
- Protein network analysis [Ritz et al. 2017/]

.V7

Parallel Hypergraph Processing

- Only two existing systems: HyperX [Jiang et al.
2019] and MESH [Heintz et al. 2019]

- Both implemented on top of Apache Spark
- This paper:

- A collection of theoretically-efficient parallel hypergraph
algorithms for shared-memory multicores

- Implemented using Hygra, a simple extension of the
Ligra graph processing framework to support
hypergraphs
- Takes advantage of existing graph optimizations:

direction-optimization, load-balancing, compression

Performance Comparison

1 iteration of PageRank on Orkut communities hypergraph
(2.3M vertices, 15.3M hyperedges, sum of hyperedge cardinalities = 107M)

150

100

0 [— . .
m HyperX (8 x4-core) = 8 x 12-cores) mMESH (72-core)

- Performance difference due to higher communication costs of
distributed-memory and overheads of Spark

Running time (seconds)
@)
o

Algorithms and Complexity Bounds

Work = # operations Span = longest sequential dependence
Algorithm ______________|Work __________[Span

Betweenness centrality O(H) O(D log H)

Maximal independent set* poly(H) polylog(H)

K-core decomposition O(H) O(p log(H))

Hypertrees O(H) O(D log H)

Hyperpaths O(H) O(D log H)

Connected components O(DH) O(D log H)

PageRank (1 iteration) O(H) O(log H)

Single-source shortest paths O(VH) O(V log H)

H = size of hypergraph V' = number of vertices

D = diameter of hypergraph p = peeling complexity

- Bounds at least as good as previous implementations (if any)

Remainder of the Talk

- Hypergraph representations

- Betweenness centrality algorithm
- K-core decomposition algorithm

- Experiments

Hypergraph Representations
Original hypergraph Clique-expanded graph

Hyperedge list
(V01 V11 V2)
(Vo V3)

Betweenness Centrality

Betweenness Centrality

- Betweenness centrality of a vertex v is the fraction of
shortest paths between all pairs of vertices that pass
through v

- Brandes’ algorithm works for graphs, does a two-phase
BFS-like traversal from each vertex, taking linear work per
vertex

- We present a parallel betweenness centrality algorithm for
hypergraphs

. 2
Betweenness Centrality (per source s)

- Puzis et al. present a sequential algorithm for
hypergraphs

- Forward and backward phase for each vertex (BFS-like
traversals)

- Forward phase:

- Compute o ,, number of shortest paths between source
vertex s and vertex v, for all vertices v in the graph

- Puzis et al.’s algorithm takes O(V + X . £ cardinality(e)?)
work overall, which is super-linear in size of hypergraph

Betweenness Centrality (per source s)

- Our algorithm stores intermediate values on hyperedges,
so that the total work is O(V + X, - g cardinality(e)) = O(H)

Vertex equation

O-s,v - 2-"e € P(v) O-s,e

P(v) are predecessor
hyperedges of vertex v

Hyperedge equation

O-s,e - Zu € P(e) O-s,u

P(e) are predecessor
vertices of hyperedge e

Vertices

Hyperedges

. S
Betweenness Centrality (per source s)

- Backward phase:

- Compute dependency scores Jse(v) for all v, which can be used to
get betweenness centrality contribution from source s

5"5(8) _ Z 530 (U)

(9
v : e€Py(v) S e

Sse@) =1+ > (05,0 Os(e)

e : vePg(e)
- Vertex and hyperedge equations are different
- Total work is also O(V + X c ¢ cardinality(e)) = O(H)

S
Aside: Hygra Interface

- Minor extension of Ligra to differentiate between processing
vertices and hyperedges in bipartite representation

Hypergraph
VertexSubset HyperedgeSubset
VertexMap HyperedgeMap
VertexProp HyperedgeProp
NextBucket UpdateBuckets

- All operators take linear work and logarithmic span

- Can use direction-optimization and graph compression from
Ligra

. 5
Betweenness Centrality (per source s)

- Forward phase:

- Each iteration keeps vertices and hyperedges on frontier as
VertexSet and HyperedgeSet
- Each iteration:

- VertexProp: Propagate path counts from VertexSet to
incident hyperedges

- HyperedgeMap: Mark hyperedges as visited

- HyperedgeProp: Propagate path counts from HyperedgeSet
fo member vertices

- VertexMap: Mark vertices as visited
- All functions are completely parallel

- Backward phase similar but with different functions
- Total work = O(H) Total span = O(diam * log H)

K-core Decomposition

K-core Decomposition

- K-core is a maximal connected sub-hypergraph where
every vertex has induced degree at least K

- Core number of a vertex is the maximum value of K for
which it appears in that K-core

- Simple parallel algorithm:
-K=0
- While hypergraph is not empty:
- If any vertices have degree at most K:

- Remove all vertices with degree at most K and their
iIncident hyperedges, assigning them core value K

- Else: K = K+1

K-core Decomposition

K=1

deg(vo) = 2
deg(v4) =3
deg(vp) =3
deg(vs) = 1

K-core Decomposition

K-core Decomposition

@ deg(vq) = 2

deg(v,) = 2

O

* No more vertices with degree at most 1, therefore
iIncrement K

K-core Decomposition

core(vp) = 1
core(vq) =2
core(v,) = 2

core(vs) = 1

K-Core Decomposition

- Naive implementation would take O(pV+H) work,
where p is the number of rounds needed (peeling
complexity)

- Use buckets to group vertices based on their
current degree [Dhulipala et al. 2017]

- Initialize bucketing structure with MakeBuckets
- While hypergraph is not empty:
- NextBucket: Extract next smallest non-empty bucket

- VertexProp: Remove vertices in extracted bucket and
their incident hyperedges

- HyperedgeProp: Decrement degrees of vertices in
deleted hyperedges

. S
K-Core Decomposition

- Each vertex extracted and deleted once

- Each hyperedge deleted once, and decrements
degrees of all incident vertices when deleted

- Total work is O(V + X, - g cardinality(e)) = O(H)

- Bucketing operations take O(log H) span, so total
span is O(p log H)

Experiments

Parallel Scalability

- Framework and algorithms implemented using Cilk Plus
- [2-core machine with hyper-threading

1000

100 E5

Random hypergraph

—
o
TTTTTT]

Running time (seconds)

0.1

~.
-~

[[[[[3
Hypertree]
B ——]

CC — |
PageRank —
SSSP --- 1
MIS :

~.
~.

L, =
L., SNT— e
T
~., e TEmm=maad
S -
\,‘\
—

I —

...............

- Average speedup of 38.7x

16 24 32 48 72 72h

Number of threads

- Speedups ranging from 8.5x to 76.5x

- Lower speedups on K-core due to many rounds

Direction Optimization

- Dense: Use a pull-based traversal applied to all vertices
or hyperedges

- Sparse: Use a push-based traversal applied to just active
vertices or hyperedges

- Hybrid: Use Sparse for small active sets and Dense for

large active sets
114

Dense =1
Sparse =

Orkut communities 0.8 [Hybrid i

hypergraph

Threshold for switching:
1/20 of hypergraph size

Running time (seconds)

B
Comparison with Clique-Expanded Graph

- Friendster hypergraph with 7.9M vertices, 1.6M
hyperedges, and sum of hyperedge cardinalities was 23.5M

- Clique-expanded graph has 5.5B edges (235x larger)

()

£ 30

o 25

c 20

-

2 15

©

ﬁ 10

©

e - —

o) O I I I

= Hypertree/BFS Connected Single-Source
Components Shortest Paths

m Hygra m Ligra (Clique-Expanded Graph)

- Hygra is 2.8-30.6x faster than using clique-expanded
graph in Ligra

. R
Conclusions

- New theoretically-efficient parallel hypergraph
algorithms implemented using Hygra

- Lots of interesting topics for further research

- Locality optimizations (e.g., reordering and
cache/NUMA segmentation for bipartite graphs)

- Implement and optimize for GPUs and other
architectures

- Code and datasets are publicly-available at
https://qgithub.com/jshun/ppopp20-ae

https://github.com/jshun/ppopp20-ae

