
Practical Parallel
Hypergraph Algorithms

Julian Shun

1

• Vertices model objects
• Edges model relationships between objects
• Applications: social networks, biological networks,
Web, scientific computing, etc.

• Lots of research on high-performance parallel
graph algorithms, frameworks, and libraries

EdgeVertex Vertex

Graphs
2

Some graph processing solutions
3

Pregel, Giraph, GPS, GraphLab, PowerGraph, PRISM, Pegasus, Knowledge Discovery
Toolbox, CombBLAS, GraphChi, GraphX, Galois, X-Stream, Gunrock, GraphMat, Ringo,
TurboGraph, TurboGraph++, FlashGraph, Grace, PathGraph, Polymer, GPSA, GoFFish,
Blogel, LightGraph, MapGraph, PowerLyra,Graphine, PowerSwitch, Imitator, XDGP,
Signal/Collect, PrefEdge, EmptyHeaded, Gemini, Wukong, Parallel BGL, KLA, Grappa,
Chronos, Green-Marl, GraphHP, P++, LLAMA, Venus, Cyclops, Medusa, NScale, Neo4J,
Trinity, GBase, RADAR, HyperGraphDB, Horton, GSPARQL, Titan, ZipG, Cagra, Milk,
Ligra, Ligra+, Lux, Julienne, GraphPad, Mosaic, GraFBoost, Graphene, Mizan, Green-
Marl, PGX, PGX.D, Wukong+S, Stinger, cuStinger, Distinger, Hornet, GraphIn, Tornado,
Bagel, KickStarter, Naiad, Kineograph, GraphMap, Presto, Cube, Giraph++, HATS,
Photon, TuX2, GRAPE, GraM, Congra, MTGL, GridGraph, NXgraph, Chaos, Mmap,
Clip, Floe, GraphGrind, DualSim, ScaleMine, Arabesque, GraMi, SAHAD, TAO, Weaver,
G-SQL, G-SPARQL, gStore, Horton+, S2RDF, Quegel, EAGRE, Shape, RDF-3X, CuSha,
Garaph, Totem, GTS, Frog, GBTL-CUDA, Graphulo, Zorro, Coral, CellIQ, GraphTau,
Wonderland, GraphP, SAGE, Laika, nvGRAPH, cuGraph, GraphIt, GraPu, GraphJet,
ImmortalGraph, LA3, Kaskade, AsyncStripe, Cgraph, GraphD, GraphH, ASAP, RStream,
Automine, GraphOne, Aspen, GBBS, Gluon, Gswitch, SEP-Graph, SIMD-X, PnP,
GraphA, Phoenix, Pregelix, ShenTu, Nepal, GraphSSD, LCC-Graph, RealGraph, Sedge,
GraphMP, Tigr, PartitionedVC, DiGraph, Abelian, faimGraph, Falcon, Puffin, GraphBolt,
GPOP, Omega, Slim graph, Log(Graph), RADS, CECI, BENU, GraphM, LIGHT, Pragh,
Helios, GraphRex, Graphflow, MAGiQ, GAPBS, Wukong+G, GraphFrames, G-CORE,
gRouting, Groute, TripleBit, SQLGraph, Graphphi, TuFast, Kaskade, etc.

4

Hypergraphs
• Hyperedges can connect
more than two vertices

• Captures more information
than a graph representation

• Some applications:
• Improved accuracy in image segmentation and spectral

clustering [Zhou et al. 2006, Ducournau and Bretto
2014, Ding and Yilmaz 2008]

• Better community detection [Bothorel and Bouklit 2011,
Roy and Ravindran 2015]

• Designing lookup tables, low-density parity-check codes
[Jiang et al. 2017]

• Satisfiability of Boolean formulas [Karp et al. 1988]
• Protein network analysis [Ritz et al. 2017]

Parallel Hypergraph Processing
5

• Only two existing systems: HyperX [Jiang et al.
2019] and MESH [Heintz et al. 2019]
• Both implemented on top of Apache Spark

• This paper:
• A collection of theoretically-efficient parallel hypergraph

algorithms for shared-memory multicores
• Implemented using Hygra, a simple extension of the

Ligra graph processing framework to support
hypergraphs
• Takes advantage of existing graph optimizations:

direction-optimization, load-balancing, compression

Performance Comparison
6

1 iteration of PageRank on Orkut communities hypergraph
(2.3M vertices, 15.3M hyperedges, sum of hyperedge cardinalities = 107M)

0

50

100

150

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

HyperX (8 x 4-core) MESH (8 x 12-cores) MESH (72-core)

Hygra (72-core) Hygra (1-thread)

• Performance difference due to higher communication costs of
distributed-memory and overheads of Spark

0.083s

Algorithms and Complexity Bounds
7

Algorithm Work Span
Betweenness centrality O(H) O(D log H)
Maximal independent set* poly(H) polylog(H)
K-core decomposition O(H) O(𝜌 log(H))
Hypertrees O(H) O(D log H)
Hyperpaths O(H) O(D log H)
Connected components O(DH) O(D log H)
PageRank (1 iteration) O(H) O(log H)
Single-source shortest paths O(VH) O(V log H)

H = size of hypergraph V = number of vertices
D = diameter of hypergraph 𝜌 = peeling complexity

• Bounds at least as good as previous implementations (if any)

Work = # operations Span = longest sequential dependence

Remainder of the Talk
8

• Hypergraph representations
• Betweenness centrality algorithm
• K-core decomposition algorithm
• Experiments

Hypergraph Representations
9

Clique-expanded graph

Bipartite graph

Hyperedge list

v3

v2

v1

v0
v3

v2

v1

v0

v3

v2

v1

v0
e0

e1

e2

(v0, v1, v2)
(v1, v2, v3)
(v0, v3)

Original hypergraph

Betweenness Centrality

10

Betweenness Centrality
11

• Betweenness centrality of a vertex v is the fraction of
shortest paths between all pairs of vertices that pass
through v

• Brandes’ algorithm works for graphs, does a two-phase
BFS-like traversal from each vertex, taking linear work per
vertex

• We present a parallel betweenness centrality algorithm for
hypergraphs

Betweenness Centrality (per source s)
12

• Puzis et al. present a sequential algorithm for
hypergraphs

• Forward and backward phase for each vertex (BFS-like
traversals)

• Forward phase:
• Compute 𝜎s,v, number of shortest paths between source

vertex s and vertex v, for all vertices v in the graph
• Puzis et al.’s algorithm takes O(V + 𝜮e ∈ E cardinality(e)2)

work overall, which is super-linear in size of hypergraph

Betweenness Centrality (per source s)
13

• Our algorithm stores intermediate values on hyperedges,
so that the total work is O(V + 𝜮e ∈ E cardinality(e)) = O(H)

c

b

a

s
e0

e1

e2

𝜎s,s = 1

𝜎s,a = 1

Vertices Hyperedges

𝜎s,c = 1

𝜎s,b = 2

𝜎s,e0 = 1

𝜎s,e2 = 1

𝜎s,v = 𝜮e ∈ P(v) 𝜎s,e

P(v) are predecessor
hyperedges of vertex v

𝜎s,e = 𝜮u ∈ P(e) 𝜎s,u

P(e) are predecessor
vertices of hyperedge e

Vertex equation

Hyperedge equation

Betweenness Centrality (per source s)
14

• Backward phase:
• Compute dependency scores for all v, which can be used to

get betweenness centrality contribution from source s

• Vertex and hyperedge equations are different
• Total work is also O(V + 𝜮e ∈ E cardinality(e)) = O(H)

15

• Minor extension of Ligra to differentiate between processing
vertices and hyperedges in bipartite representation

Aside: Hygra Interface

Hypergraph

VertexSubset

VertexMap

VertexProp

UpdateBuckets

HyperedgeSubset

HyperedgeMap

HyperedgeProp

NextBucket
• All operators take linear work and logarithmic span
• Can use direction-optimization and graph compression from

Ligra

16

• Forward phase:
• Each iteration keeps vertices and hyperedges on frontier as
VertexSet and HyperedgeSet

• Each iteration:
• VertexProp: Propagate path counts from VertexSet to

incident hyperedges
• HyperedgeMap: Mark hyperedges as visited
• HyperedgeProp: Propagate path counts from HyperedgeSet

to member vertices
• VertexMap: Mark vertices as visited
• All functions are completely parallel

• Backward phase similar but with different functions
• Total work = O(H) Total span = O(diam * log H)

Betweenness Centrality (per source s)

K-core Decomposition

17

K-core Decomposition
18

• K-core is a maximal connected sub-hypergraph where
every vertex has induced degree at least K

• Core number of a vertex is the maximum value of K for
which it appears in that K-core

• Simple parallel algorithm:
• K = 0
• While hypergraph is not empty:

• If any vertices have degree at most K:
• Remove all vertices with degree at most K and their

incident hyperedges, assigning them core value K
• Else: K = K+1

K-core Decomposition
19

v3

v2

v1

v0
deg(v0) = 2
deg(v1) = 3
deg(v2) = 3
deg(v3) = 1

K=1

K-core Decomposition
20

v2

v1

v0
deg(v0) = 1
deg(v1) = 3
deg(v2) = 3

K=1

K-core Decomposition
21

v2

v1

deg(v1) = 2
deg(v2) = 2

• No more vertices with degree at most 1, therefore
increment K

K=1K=2

K-core Decomposition
22

v3

v2

v1

v0
core(v0) = 1
core(v1) = 2
core(v2) = 2
core(v3) = 1

23

• Naïve implementation would take O(𝜌V+H) work,
where 𝜌 is the number of rounds needed (peeling
complexity)

• Use buckets to group vertices based on their
current degree [Dhulipala et al. 2017]

• Initialize bucketing structure with MakeBuckets
• While hypergraph is not empty:

• NextBucket: Extract next smallest non-empty bucket
• VertexProp: Remove vertices in extracted bucket and

their incident hyperedges
• HyperedgeProp: Decrement degrees of vertices in

deleted hyperedges

K-Core Decomposition

24

• Each vertex extracted and deleted once
• Each hyperedge deleted once, and decrements
degrees of all incident vertices when deleted

• Total work is O(V + 𝜮e ∈ E cardinality(e)) = O(H)

• Bucketing operations take O(log H) span, so total
span is O(𝜌 log H)

K-Core Decomposition

Experiments

25

Parallel Scalability
26

• Speedups ranging from 8.5x to 76.5x
• Average speedup of 38.7x
• Lower speedups on K-core due to many rounds

0.1

1

10

100

1000

1 2 4 8 16 24 32 48 72 72h

R
un
ni
ng

tim
e
(s
ec
on
ds
)

Number of threads

Hypertree
BC
CC

PageRank
SSSP
MIS

WE k-core

Random hypergraph

• Framework and algorithms implemented using Cilk Plus
• 72-core machine with hyper-threading

Direction Optimization
27

• Dense: Use a pull-based traversal applied to all vertices
or hyperedges

• Sparse: Use a push-based traversal applied to just active
vertices or hyperedges

• Hybrid: Use Sparse for small active sets and Dense for
large active sets

0

0.2

0.4

0.6

0.8

1

Hypertree

BC CC PageRank

SSSP
MIS

WE k-core

11.4
R
un
ni
ng

tim
e
(s
ec
on
ds
) Dense

Sparse
HybridOrkut communities

hypergraph

Threshold for switching:
1/20 of hypergraph size

Comparison with Clique-Expanded Graph
28

• Friendster hypergraph with 7.9M vertices, 1.6M
hyperedges, and sum of hyperedge cardinalities was 23.5M

• Clique-expanded graph has 5.5B edges (235x larger)

0
5

10
15
20
25
30

Hypertree/BFS Connected
Components

Single-Source
Shortest Paths

N
or

m
al

iz
ed

 ru
nn

in
g

tim
e

Hygra Ligra (Clique-Expanded Graph)
• Hygra is 2.8-30.6x faster than using clique-expanded

graph in Ligra

Conclusions
29

• New theoretically-efficient parallel hypergraph
algorithms implemented using Hygra

• Lots of interesting topics for further research
• Locality optimizations (e.g., reordering and

cache/NUMA segmentation for bipartite graphs)
• Implement and optimize for GPUs and other

architectures
• Code and datasets are publicly-available at
https://github.com/jshun/ppopp20-ae

https://github.com/jshun/ppopp20-ae

