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• Vertices model objects
• Edges model relationships between objects
• Applications: social networks, biological networks, 
Web, scientific computing, etc.

• Lots of research on high-performance parallel 
graph algorithms, frameworks, and libraries
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Some graph processing solutions
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Pregel, Giraph, GPS, GraphLab, PowerGraph, PRISM, Pegasus, Knowledge Discovery 
Toolbox, CombBLAS, GraphChi, GraphX, Galois, X-Stream, Gunrock, GraphMat, Ringo, 
TurboGraph, TurboGraph++, FlashGraph, Grace, PathGraph, Polymer, GPSA, GoFFish, 
Blogel, LightGraph, MapGraph, PowerLyra,Graphine, PowerSwitch, Imitator, XDGP, 
Signal/Collect, PrefEdge, EmptyHeaded, Gemini, Wukong, Parallel BGL, KLA, Grappa, 
Chronos, Green-Marl, GraphHP, P++, LLAMA, Venus, Cyclops, Medusa, NScale, Neo4J, 
Trinity, GBase, RADAR, HyperGraphDB, Horton, GSPARQL, Titan, ZipG, Cagra, Milk, 
Ligra, Ligra+, Lux, Julienne, GraphPad, Mosaic, GraFBoost, Graphene, Mizan, Green-
Marl, PGX, PGX.D, Wukong+S, Stinger, cuStinger, Distinger, Hornet, GraphIn, Tornado, 
Bagel, KickStarter, Naiad, Kineograph, GraphMap, Presto, Cube, Giraph++, HATS, 
Photon, TuX2, GRAPE, GraM, Congra, MTGL, GridGraph, NXgraph,  Chaos, Mmap, 
Clip, Floe, GraphGrind, DualSim, ScaleMine, Arabesque, GraMi, SAHAD, TAO, Weaver, 
G-SQL, G-SPARQL, gStore, Horton+, S2RDF, Quegel, EAGRE, Shape, RDF-3X, CuSha, 
Garaph, Totem, GTS, Frog, GBTL-CUDA, Graphulo, Zorro, Coral, CellIQ, GraphTau, 
Wonderland, GraphP, SAGE, Laika, nvGRAPH, cuGraph, GraphIt, GraPu, GraphJet, 
ImmortalGraph, LA3, Kaskade, AsyncStripe, Cgraph, GraphD, GraphH, ASAP, RStream, 
Automine, GraphOne, Aspen, GBBS, Gluon, Gswitch, SEP-Graph, SIMD-X, PnP, 
GraphA, Phoenix, Pregelix, ShenTu, Nepal, GraphSSD, LCC-Graph, RealGraph, Sedge, 
GraphMP, Tigr, PartitionedVC, DiGraph, Abelian, faimGraph, Falcon, Puffin, GraphBolt, 
GPOP, Omega, Slim graph, Log(Graph), RADS, CECI, BENU, GraphM, LIGHT, Pragh, 
Helios, GraphRex, Graphflow, MAGiQ, GAPBS, Wukong+G, GraphFrames, G-CORE, 
gRouting, Groute, TripleBit, SQLGraph, Graphphi, TuFast, Kaskade, etc.
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Hypergraphs
• Hyperedges can connect 
more than two vertices

• Captures more information
than a graph representation

• Some applications:
• Improved accuracy in image segmentation and spectral 

clustering [Zhou et al. 2006, Ducournau and Bretto
2014, Ding and Yilmaz 2008]

• Better community detection [Bothorel and Bouklit 2011, 
Roy and Ravindran 2015]

• Designing lookup tables, low-density parity-check codes 
[Jiang et al. 2017]

• Satisfiability of Boolean formulas [Karp et al. 1988]
• Protein network analysis [Ritz et al. 2017]



Parallel Hypergraph Processing
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• Only two existing systems: HyperX [Jiang et al. 
2019] and MESH [Heintz et al. 2019]
• Both implemented on top of Apache Spark

• This paper:
• A collection of theoretically-efficient parallel hypergraph 

algorithms for shared-memory multicores
• Implemented using Hygra, a simple extension of the 

Ligra graph processing framework to support 
hypergraphs
• Takes advantage of existing graph optimizations: 

direction-optimization, load-balancing, compression



Performance Comparison
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1 iteration of PageRank on Orkut communities hypergraph 
(2.3M vertices, 15.3M hyperedges, sum of hyperedge cardinalities = 107M) 
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• Performance difference due to higher communication costs of 
distributed-memory and overheads of Spark
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Algorithms and Complexity Bounds
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Algorithm Work Span
Betweenness centrality O(H) O(D log H)
Maximal independent set* poly(H) polylog(H)
K-core decomposition O(H) O(𝜌 log(H))
Hypertrees O(H) O(D log H)
Hyperpaths O(H) O(D log H)
Connected components O(DH) O(D log H)
PageRank (1 iteration) O(H) O(log H)
Single-source shortest paths O(VH) O(V log H)

H = size of hypergraph V = number of vertices
D = diameter of hypergraph 𝜌 = peeling complexity

• Bounds at least as good as previous implementations (if any)

Work = # operations Span = longest sequential dependence



Remainder of the Talk
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• Hypergraph representations
• Betweenness centrality algorithm
• K-core decomposition algorithm
• Experiments



Hypergraph Representations
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Clique-expanded graph

Bipartite graph

Hyperedge list

v3

v2

v1

v0
v3

v2

v1

v0

v3

v2

v1

v0
e0

e1

e2

(v0, v1, v2)
(v1, v2, v3)
(v0, v3)

Original hypergraph



Betweenness Centrality
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Betweenness Centrality
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• Betweenness centrality of a vertex v is the fraction of 
shortest paths between all pairs of vertices that pass 
through v

• Brandes’ algorithm works for graphs, does a two-phase 
BFS-like traversal from each vertex, taking linear work per 
vertex

• We present a parallel betweenness centrality algorithm for 
hypergraphs



Betweenness Centrality (per source s)
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• Puzis et al. present a sequential algorithm for 
hypergraphs

• Forward and backward phase for each vertex (BFS-like 
traversals)

• Forward phase:
• Compute 𝜎s,v, number of shortest paths between source 

vertex s and vertex v, for all vertices v in the graph
• Puzis et al.’s algorithm takes O(V + 𝜮e ∈ E cardinality(e)2) 

work overall, which is super-linear in size of hypergraph



Betweenness Centrality (per source s)
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• Our algorithm stores intermediate values on hyperedges, 
so that the total work is O(V + 𝜮e ∈ E cardinality(e)) = O(H) 
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Betweenness Centrality (per source s)
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• Backward phase:
• Compute dependency scores for all v, which can be used to 

get betweenness centrality contribution from source s

• Vertex and hyperedge equations are different
• Total work is also O(V + 𝜮e ∈ E cardinality(e)) = O(H) 
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• Minor extension of Ligra to differentiate between processing 
vertices and hyperedges in bipartite representation

Aside: Hygra Interface

Hypergraph

VertexSubset

VertexMap

VertexProp

UpdateBuckets

HyperedgeSubset

HyperedgeMap

HyperedgeProp

NextBucket
• All operators take linear work and logarithmic span
• Can use direction-optimization and graph compression from 

Ligra
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• Forward phase:
• Each iteration keeps vertices and hyperedges on frontier as 
VertexSet and HyperedgeSet

• Each iteration:
• VertexProp: Propagate path counts from VertexSet to 

incident hyperedges
• HyperedgeMap: Mark hyperedges as visited
• HyperedgeProp: Propagate path counts from HyperedgeSet

to member vertices
• VertexMap: Mark vertices as visited
• All functions are completely parallel

• Backward phase similar but with different functions
• Total work = O(H) Total span = O(diam * log H)

Betweenness Centrality (per source s)



K-core Decomposition
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K-core Decomposition
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• K-core is a maximal connected sub-hypergraph where 
every vertex has induced degree at least K

• Core number of a vertex is the maximum value of K for 
which it appears in that K-core

• Simple parallel algorithm:
• K = 0
• While hypergraph is not empty:

• If any vertices have degree at most K:
• Remove all vertices with degree at most K and their 

incident hyperedges, assigning them core value K
• Else: K = K+1



K-core Decomposition
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K-core Decomposition
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K-core Decomposition
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• No more vertices with degree at most 1, therefore 
increment K

K=1K=2



K-core Decomposition
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• Naïve implementation would take O(𝜌V+H) work, 
where 𝜌 is the number of rounds needed (peeling 
complexity)

• Use buckets to group vertices based on their 
current degree [Dhulipala et al. 2017]

• Initialize bucketing structure with MakeBuckets
• While hypergraph is not empty:

• NextBucket: Extract next smallest non-empty bucket
• VertexProp: Remove vertices in extracted bucket and 

their incident hyperedges
• HyperedgeProp: Decrement degrees of vertices in 

deleted hyperedges

K-Core Decomposition
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• Each vertex extracted and deleted once
• Each hyperedge deleted once, and decrements 
degrees of all incident vertices when deleted

• Total work is O(V + 𝜮e ∈ E cardinality(e)) = O(H) 

• Bucketing operations take O(log H) span, so total 
span is O(𝜌 log H)

K-Core Decomposition



Experiments
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Parallel Scalability 
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• Speedups ranging from 8.5x to 76.5x 
• Average speedup of 38.7x
• Lower speedups on K-core due to many rounds
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Direction Optimization
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• Dense: Use a pull-based traversal applied to all vertices 
or hyperedges

• Sparse: Use a push-based traversal applied to just active 
vertices or hyperedges

• Hybrid: Use Sparse for small active sets and Dense for 
large active sets
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Comparison with Clique-Expanded Graph
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• Friendster hypergraph with 7.9M vertices, 1.6M 
hyperedges, and sum of hyperedge cardinalities was 23.5M 

• Clique-expanded graph has 5.5B edges (235x larger)
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Conclusions
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• New theoretically-efficient parallel hypergraph 
algorithms implemented using Hygra

• Lots of interesting topics for further research
• Locality optimizations (e.g., reordering and 

cache/NUMA segmentation for bipartite graphs)
• Implement and optimize for GPUs and other 

architectures
• Code and datasets are publicly-available at 
https://github.com/jshun/ppopp20-ae

https://github.com/jshun/ppopp20-ae

