
Pregel: A System for Large Scale
Graph Processing

Malewicz et al.

Presentation by Yosef E Mihretie

How do I feel about presenting one of the few papers
from Google not written by Jeff Dean and one among a
few in this class not written by Julian Shun?

How do I feel about presenting one of the few papers
from Google not written by Jeff Dean and one among a
few in this class not written by Julian Shun?

Motivation

● Graphs are widely used for modeling problems in many different domains

● Sizes of these graphs today are gigantic and growing - billions of vertices and
trillions of edge for the biggest once today

● Can not be handled on single commodity PCs. Powerful single node machines are
expensive and might not support graphs in the near future => distributed
memory parallel computing is a good solution

● Pregel is a distributed memory large-scale graph computing framework designed
for directed graphs

● Pregel is scalable, fault-tolerant and general purpose

Model of computation

● Based on Valiant’s Bulk Processing Model - vertex centric and message passing
interface based

● Computation divided into iterations called supersteps

● Each vertex keeps a value for itself and for each of its outgoing edges. It can
also exchange messages with other vertices.

● In superstate S, a vertex V can:
○ Receive messages sent to it in superstep S-1
○ Send messages that will be delivered in S+1
○ Mutate graph topology, which will be effective in S+1
○ Modify its state or that of its outgoing edges

Model of computation

● Initially, all vertices are active. Computation stops when all vertices are inactive
and there are no messages in transit.

● These are accomplished by invoking a user defined function on active vertices

Model of computation

Example:

API
● Vertex class

● User subclasses this and overrides Compute()

● Messages can be sent to any vertex if identifier is known

API - Combiner and Aggregator
Combiner class:

● For some algorithms, only some commutative and associative combination of the
messages matters

● To reduce network traffic, users can subclass the Combiner class and override the
Combine() method to define how messages can be combined for these algorithms

Aggregator class

● Used for global communication, monitoring and data
● Operates on values provided by vertices
● Example use - Delta-stepping shortest path

API - Topology Mutations

● Vertices can issue a request to add or delete a vertex or an edge

● Partial ordering: Edge removals > vertex removals > vertex addition >
edge addition > Compute()

● Other conflicts are handled by randomly choosing an operation among
conflicting once by default

● Custom handlers can also be provided by user

Implementation Details

● Executed on a cluster of 1000s of commodity PCs

● Cluster management system for scheduling jobs, allocating resources, moving
tasks between PCs

● Name service, persistent storage (GFS, BigTable) available

● Vertices split into partitions and partitions allocated to Worker machines

● Partitioning method can customized

● A master computer coordinates worker activity

Fault tolerance

● Commodity PCs are vulnerable to failure

● Fault tolerance is achieved by checkpointing to a persistent storage

● Master pings workers. If no response in a certain time, worker considered dead
and partitions reassigned to other workers

● Recovery is done by reverting the entire operation to the last checkpoint

● Optimization: checkpoint exchanged messages and recover only the partitions of
dead workers

Worker Implementation

● Each assigned partition runs in a thread

● Vertex state and incoming message require two queue each - one for this
superstep and one for second

● Loop through vertices in a partition, invoke Compute

● Put messages being sent in an outgoing buffer if receiver in another machine, or
directly put in the buffer of the receiver queue if in the same machine

Applications - PageRank

Applications - SSSP

Experiments

● Run SSSP on a 300 multicore commodity PCs cluster on a 1B vertex, 1B
binary graph

Experiments

● Run SSSP on a 300 multicore commodity PCs cluster on binary graphs

Experiments

● Run SSSP on a 300 multicore commodity PCs cluster on random graph that
use a log-normal distribution of outdegrees,

Strengths and Weaknesses

Strengths

● API is easy to use and reason with
● Scalability
● Fault Tolerance
● Generality

Weaknesses

● Generality not rigorously established
● Experiments insufficient

Future Work

● Formulating generalizability rigorously sounds appealing

● Extensive experiments to establish comparative advantage over external
computation on commodity PCs

● Cost-benefit analysis on similar algorithms in shared-memory frameworks on
advanced single node machines

● Experiments to establish where the bottlenecks are in Pregel

● Partitions methods and dynamic partitioning as graph changes

Thank you!

