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Motivation
e (Graphs are widely used for modeling problems in many different domains

e Sizes of these graphs today are gigantic and growing - billions of vertices and
trillions of edge for the biggest once today

e (an not be handled on single commodity PCs. Powerful single node machines are
expensive and might not support graphs in the near future =>> distributed
memory parallel computing is a good solution

e Pregel is a distributed memory large-scale graph computing framework designed
for directed graphs

e Pregel is scalable, fault-tolerant and general purpose



Model of computation

e DBased on Valiant’s Bulk Processing Model - vertex centric and message passing
interface based

e [ach vertex keeps a value for itself and for each of its outgoing edges. It can
also exchange messages with other vertices.

e (Computation divided into iterations called supersteps

e In superstate S, a vertex V can:
o Receive messages sent to it in superstep S-1
o Send messages that will be delivered in S+1
o  Mutate graph topology, which will be effective in S4-1
o  Modify its state or that of its outgoing edges



Model of computation

e These are accomplished by invoking a user defined function on active vertices

Vote to halt

Message recewed

Figure 1: Vertex State Machine

e [Initially, all vertices are active. Computation stops when all vertices are inactive
and there are no messages in transit.



Model of computation

Example:
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Figure 2: Maximum Value Example. Dotted lines
are messages. Shaded vertices have voted to halt.




API

template <typename VertexValue,
typename EdgeValue,

® VeI'teX ClaSS typename MessageValue>

class Vertex {
public:
virtual void Compute(Messagelterator* msgs) = 0;

const stringk vertex_id() const;
int64 superstep() const;

const VertexValuek GetValue();

VertexValue* MutableValue();

OutEdgelterator GetOutEdgelterator();

void SendMessageTo(const stringk dest_vertex,
const MessageValuek message);

void VoteToHalt();
¥;

Figure 3: The Vertex API foundations.

e User subclasses this and overrides Compute()

e Messages can be sent to any vertex if identifier is known



API - Combiner and Aggregator

Combiner class:

e For some algorithms, only some commutative and associative combination of the
messages matters

e To reduce network traffic, users can subclass the Combiner class and override the
Combine() method to define how messages can be combined for these algorithms

Aggregator class

e Used for global communication, monitoring and data
e Operates on values provided by vertices
e [xample use - Delta-stepping shortest path



API - Topology Mutations

e Vertices can issue a request to add or delete a vertex or an edge

e Partial ordering: Hdge removals > vertex removals > vertex addition >
edge addition > Compute()

e Other conflicts are handled by randomly choosing an operation among
conflicting once by default

e (Custom handlers can also be provided by user



Implementation Details
e [ixecuted on a cluster of 1000s of commodity PCs

e (luster management system for scheduling jobs, allocating resources, moving
tasks between PCs

e Name service, persistent storage (GF'S, BigTable) available
e Vertices split into partitions and partitions allocated to Worker machines
e Partitioning method can customized

e A master computer coordinates worker activity



Fault tolerance
e (Commodity PCs are vulnerable to failure
e [ault tolerance is achieved by checkpointing to a persistent storage

e Master pings workers. If no response in a certain time, worker considered dead
and partitions reassigned to other workers

e Recovery is done by reverting the entire operation to the last checkpoint

e Optimization: checkpoint exchanged messages and recover only the partitions of
dead workers



Worker Implementation
e Hach assigned partition runs in a thread

e Vertex state and incoming message require two queue each - one for this
superstep and one for second

e Loop through vertices in a partition, invoke Compute

e Put messages being sent in an outgoing buffer if receiver in another machine, or
directly put in the buffer of the receiver queue if in the same machine



Applications - PageRank

class PageRankVertex
: public Vertex<double, void, double> {
public:
virtual void Compute(Messagelterator* msgs) {
if (superstep() >= 1) {
double sum = 0;
for (; !'msgs->Done(); msgs->Next())
sum += msgs->Value();
*MutableValue() =
0.15 / NumVertices() + 0.85 * sum;
}

if (superstep() < 30) {
const int64 n = GetOutEdgelterator().size();
SendMessageToAllNeighbors(GetValue() / n);

} else {
VoteToHalt();

}

}
h

Figure 4: PageRank implemented in Pregel.



Applications - SSSP

class ShortestPathVertex
: public Vertex<int, int, int> {
void Compute(Messagelterator* msgs) {
int mindist = IsSource(vertex_id()) ? 0 : INF;
for (; 'msgs->Done(); msgs->Next())
mindist = min(mindist, msgs->Value());
if (mindist < GetValue()) {
=MutableValue() = mindist;
OutEdgelterator iter = GetOutEdgeIterator();
for (; !iter.Done(); iter.Next())
SendMessageTo(iter.Target(),
mindist + iter.GetValue());
}
VoteToHalt();
}
};

Figure 5: Single-source shortest paths.

class MinIntCombiner : public Combiner<int> {
virtual void Combine(Messagelterator* msgs) {
int mindist = INF;
for (; !'msgs->Done(); msgs->Next())
mindist = min(mindist, msgs->Value());
Output ("combined_source", mindist);
}
};

Figure 6: Combiner that takes minimum of message
values.



Kxperiments

e Run SSSP on a 300 multicore commodity PCs cluster on a 1B vertex, 1B
binary graph
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Figure 7: SSSP—1 billion vertex binary tree: vary-
ing number of worker tasks scheduled on 300 multi-
core machines




Kxperiments

e Run SSSP on a 300 multicore commodity PCs cluster on binary graphs
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Figure 8: SSSP—binary trees: varying graph sizes
on 300 worker tasks scheduled on 300 multicore ma-
chines




Kxperiments

e Run SSSP on a 300 multicore commodity PCs cluster on random graph that
use a log-normal distribution of outdegrees,
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Figure 9: SSSP—Ilog-normal random graphs, mean
out-degree 127.1 (thus over 127 billion edges in the
largest case): varying graph sizes on 800 worker
tasks scheduled on 300 multicore machines



Strengths and Weaknesses

Strengths

e APIis easy to use and reason with
e Scalability

e Fault Tolerance

e (Generality

Weaknesses

e (enerality not rigorously established
e [xperiments insufficient
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Future Work

e Formulating generalizability rigorously sounds appealing

e [xtensive experiments to establish comparative advantage over external
computation on commodity PCs

e C(Cost-benefit analysis on similar algorithms in shared-memory frameworks on
advanced single node machines

e [Hxperiments to establish where the bottlenecks are in Pregel

e Partitions methods and dynamic partitioning as graph changes



Thank you!



