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Setup: Why PowerGraph?

Many graph frameworks deal with distributed data over large graphs
(e.g. Pregel, GraphLib, etc).
Thematic idea: Process over vertices to compute local neighborhood
data and then pass data to other vertices in future steps (possibly
across the network).
Often fails to scale well for vertices with large degrees. These
frameworks scale as the degree increases.
The lack of frameworks which incorporated natural power law
characteristics seen in many real life graphs motivated the
development of PowerGraph.
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Setup: Influence of Power Laws

Power Law
P [d ] ∝ d−α where α is an exponent which controls skewness.

A higher α means more skewness or fewer outlier vertices.
Typically α ≈ 2. αtwitter ≈ 1.8
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Aside: Graph Parallel Abstractions

Let G (V ,E ) be a sparse and N(v) be the adjacent vertices of v
Each vertex v ∈ V has the same executing vertex program, Q. Each
Q(v) may execute in parallel with other vertices’ programs.
Each v ∈ V has associated data Dv

Each edge e ∈ E has data D(u,v)
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Gather, Apply, Scatter (GAS) Abstraction
Each vertex v undergoes the following steps:

1 Gather phase: Collect information of N(v) and combines information
into an aggregate statistic.

2 Apply phase: Apply the aggregate statistic to v

3 Scatter phase: Forward the changes in v to the adjacent edges.
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Application: Graph Coloring

Given a graph G , color using c = 1, 2, . . . such that no two vertices
share the same color.
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Application: Graph Coloring

Given a graph G , color using c = 1, 2, . . . such that no two vertices
share the same color.

Figure 1: Greedy Graph Coloring
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Application: Graph Coloring

Given a graph G , color using c = 1, 2, . . . such that no two vertices
share the same color.

Figure 2: Greedy Graph Coloring

What is Activate()?
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GAS’s Termination Rules

Figure 3: Greedy Graph Coloring

A vertex remains activate until its vertex program terminates.
Becomes inactive.
Any vertex, including itself, can call Activate(v) to start a new
execution of GAS.
The graph procedure ends when all vertices are inactive.
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PowerGraph Abstraction

PowerGraph implements the GAS abstraction and rules via gather,
sum, apply, and scatter.
Can formulate Pregel and other libraries in terms of PowerGraph
abstraction
Unlike Pregel and PowerGraph, provides a caching method called
delta caching
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What is new then?

Often large graphs require many machines.
Occasionally some vertices require multiple machines!
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What is new then?

Often large graphs require many machines.
Occasionally some vertices require multiple machines!
In Pregel, we must have a copy of the vertex in each machine.

Can introduce "ghost" edges.
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PowerGraph Solution

Use vertex cuts instead.

Authors: Joseph Gonzalez, Yucheng Low, et al (Presenter: Ian Limarta)PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs 10 / 17



PowerGraph Solution

Use vertex cuts instead.
Machines store edges. Each edge lies in exactly one machine.
Vertices may have replicas across machines.
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Handling Replicas

Some crucial details:
Since there are many replicas of vertices, PowerGraph employs the
master-follower paradigm to commit changes into vertices.
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Handling Replicas

Since there are many replicas of vertices, PowerGraph employs the master-
follower paradigm to commit changes into vertices.

Figure 4: Replicas of a vertex

Master is randomly selected per set of replicas.
All changes directed to master.
Followers are read-only for everyone except the master
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Balanced p-way Vertex Cuts

Since vertices are replicated across machines, can’t we run into similar
memory and network problems as Pregel?
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Balanced p-way Vertex Cuts

Since vertices are replicated across machines, can’t we run into similar
memory and network problems as Pregel?
If we used edge cuts, yes. Not so much for vertex.
How do we distribute edges across machines?
Randomly hash edges to machines i ∈ {1, 2, . . . p}?
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Balanced p-way Vertex Cuts

Since vertices are replicated across machines, can’t we run into similar
memory and network problems as Pregel?
If we used edge cuts, yes. Not so much for vertex.
How do we distribute edges across machines?
Randomly hash edges to machines i ∈ {1, 2, . . . p}?
Yes!
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Balanced p-way Vertex Cuts

Let A(v) be the machines that have replicas of vertex v where
A(V ) ⊂ {1, 2, . . . , p}
Let A(e) be the machine containing edge e ∈ E .
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Analysis

Let A(v) be the machines that have replicas of vertex v where
A(V ) ⊂ {1, 2, . . . , p}
Let A(e) be the machine containing edge e ∈ E .

min
A

1
|V |

∑
v∈V

|A(v)|

s.t
max
m

|{e ∈ E | A(e) = m}| < λ
|E |
p
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min
A

1
|V |

∑
v∈V

|A(v)|

s.t
max
m

|{e ∈ E | A(e) = m}| < λ
|E |
p

We say we have a balanced p-way vertex cut for the edge assignments
corresponding to the solution to this optimization problem.
Somewhat difficult to solve. Can instead randomly hash edges to
machines
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Analysis of Edge Hashing

Theorem 1: Randomized Vertex Cuts
A random vertex cut on p machines has expected replication

E

[
1
|V |

∑
v∈V

|A(v)|

]
=

p

|V |
∑
v∈V

(
1 −

(
1 − 1

p

)D(v)
)
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Greedy Edge Hashing

It turns out that we can derandomize our randomized vertex algorithm
Guarantees at least as good replica score as the randomized algorithm
Greedily maximize the conditional replica score given the edge
assignments already completed.
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Edge balancing

The previous theorem shows that as α → 0, the replication factor
increases.
But compared to edge cuts, vertex cuts does significantly better
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Replication factor in real graphs
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