PowerGraph: Distributed Graph-Parallel Computation on
Natural Graphs

Authors: Joseph Gonzalez, Yucheng Low, et al

Presenter: lan Limarta

Authors: Joseph Gonzalez, Yucheng Low PowerGraph: Distributed Graph-Parallel ¢

Outline

© Setup

© GAS Abstraction
e Applications of PowerGraph
@ PowerGraph Abstraction

© Experimental Results

Authors: Joseph Gonzalez, Yucheng Low PowerGraph: Distributed Graph-Parallel ¢

Setup: Why PowerGraph?

@ Many graph frameworks deal with distributed data over large graphs
(e.g. Pregel, GraphLib, etc).

@ Thematic idea: Process over vertices to compute local neighborhood
data and then pass data to other vertices in future steps (possibly
across the network).

e Often fails to scale well for vertices with large degrees. These
frameworks scale as the degree increases.

@ The lack of frameworks which incorporated natural power law
characteristics seen in many real life graphs motivated the
development of PowerGraph.

Authors: Joseph Gonzalez, Yucheng Low,PowerGraph: Distributed Graph-Parallel ¢ 3/17

A

Setup: Influence of Power Laws

Power Law

P [d] oc d= where « is an exponent which

controls skewness.

Pr(X==x)
3.0

25

2.0

=00
a=3
a=2

a=1

Number of Vertices

10° 10t 10
In Degree

o

(a) Twitter In-Degree

a.- 8;

Number of Vertices
3,
Q
n
N

aN

10°
10° 10" 10
Out Degree

(b) Twitter Out-Degree

@ A higher o means more skewness or fewer outlier vertices.

e Typically o = 2. apwirter =~ 1.8

uthors: Joseph Gonzalez, Yucheng Low,PowerGraph: Distributed Graph-Parallel ¢

4/17

Aside: Graph Parallel Abstractions

o Let G(V,E) be a sparse and N(v) be the adjacent vertices of v

@ Each vertex v € V has the same executing vertex program, Q. Each
Q(v) may execute in parallel with other vertices' programs.

@ Each v € V has associated data D,
e Each edge e € E has data Dy,

Authors: Joseph Gonzalez, Yucheng Low,PowerGraph: Distributed Graph-Parallel ¢ 5/17

Aside: Graph Parallel Abstractions

Let G(V, E) be a sparse and N(v) be the adjacent vertices of v

Each vertex v € V has the same executing vertex program, Q. Each
Q(v) may execute in parallel with other vertices' programs.

Each v € V has associated data D,
Each edge e € E has data D,)

Gather, Apply, Scatter (GAS) Abstraction
Each vertex v undergoes the following steps:

@ Gather phase: Collect information of N(v) and combines information
into an aggregate statistic.

@ Apply phase: Apply the aggregate statistic to v

© Scatter phase: Forward the changes in v to the adjacent edges.

Authors: Joseph Gonzalez, Yucheng Low,PowerGraph: Distributed Graph-Parallel ¢ 5/17

Aside: Graph Parallel Abstractions

Gather, Apply, Scatter (GAS) Abstraction

Each vertex v undergoes the following steps:

@ Gather phase: Collect information of N(v) and combines information
into an aggregate statistic.

@ Apply phase: Apply the aggregate statistic to v

© Scatter phase: Forward the changes in v to the adjacent edges.

Algorithm 1: Vertex-Program Execution Semantics
Input: Center vertex u
if cached accumulator a,, is empty then

foreach neighbor v in gather_nbrs(u) do
| ay < sum(ay, gather(D,,, D(u,v)- D,))

interface GASVertexProgram(u) {
// Run on gather_nbrs (u)

gather (Dy, D(,,, Dy) — Accum

sum (Accum left, Accum right) — Accum dend
apply (D,, Accum) — DBV en
/fﬁu:’ onus,catter nbrs (u) ! Dy < apply(Dy, av)
N foreach neighbor v scatter_nbrs(u) do
scatter (D;®", D(“YV) ,Dy) — (Dz‘fy) , Accum)

} (D(M) ,Aa) + scatter(Dy,, D y)> Dv)
| if a, and Aa are not Empty then a, < sum(a,, Aa)
else a, < Empty

end

Authors: Joseph Gonzalez, Yucheng Low,PowerGraph: Distributed Graph-Parallel ¢ 5/17

Application: Graph Coloring

@ Given a graph G, color using ¢ = 1,2,... such that no two vertices
share the same color.

Authors: Joseph Gonzalez, Yucheng Low,PowerGraph: Distributed Graph-Parallel ¢ 6/17

Application: Graph Coloring

@ Given a graph G, color using ¢ = 1,2,... such that no two vertices
share the same color.

// gather_nbrs: ALL_NBRS
gather (D,, D(u,v)r Dy) :
return set (D)
sum(a, b): return union(a, b)
apply(D,, S):
D, = min ¢ where c¢S§
// scatter_nbrs: ALL_NBRS
scatter (Dy, D,y ,Dy) :
// Nbr changed since gather
if(Dy == Dy)
Activate (v)
// Invalidate cached accum
return NULL

Figure 1: Greedy Graph Coloring

Authors: Joseph Gonzalez, Yucheng Low,PowerGraph: Distributed Graph-Parallel ¢ 6/17

Application: Graph Coloring

@ Given a graph G, color using ¢ = 1,2,... such that no two vertices
share the same color.

// gather_nbrs: ALL_NBRS
gather (D,, D(u,v)r Dy) :
return set (D)
sum(a, b): return union(a, b)
apply(D,, S):
D, = min ¢ where c¢S§
// scatter_nbrs: ALL_NBRS
scatter (Du,D(u,V),DV) :
// Nbr changed since gather
if(Dy == D)
Activate (v)
// Invalidate cached accum
return NULL

Figure 2: Greedy Graph Coloring
e What is Activate()?

Authors: Joseph Gonzalez, Yucheng Low,PowerGraph: Distributed Graph-Parallel ¢ 6/17

GAS's Termination Rules

// gather_nbrs: ALL_NBRS
gather (D, D(u,v)l D,) :
return set (D)
sum(a, b): return union(a, b)
apply (Dy, S):
D, = min ¢ where c¢S§
// scatter_nbrs: ALL_NBRS
scatter (Dy,D(yy),Dy) :
// Nbr changed since gather
if (Dy == Dy)
Activate (v)
// Invalidate cached accum
return NULL

Figure 3: Greedy Graph Coloring

@ A vertex remains activate until its vertex program terminates.
Becomes inactive.

@ Any vertex, including itself, can call Activate(v) to start a new
execution of GAS.

@ The graph procedure ends when all vertices are inactive.

Authors: Joseph Gonzalez, Yucheng Low PowerGraph: Distributed Graph-Parallel ¢ 7/17

PowerGraph Abstraction

@ PowerGraph implements the GAS abstraction and rules via gather,
sum, apply, and scatter.

@ Can formulate Pregel and other libraries in terms of PowerGraph
abstraction

@ Unlike Pregel and PowerGraph, provides a caching method called
delta caching

Authors: Joseph Gonzalez, Yucheng Low,PowerGraph: Distributed Graph-Parallel ¢ 8/17

What is new then?

o Often large graphs require many machines.

@ Occasionally some vertices require multiple machines!

Authors: Joseph Gonzalez, Yucheng Low,PowerGraph: Distributed Graph-Parallel ¢ 9/17

What is new then?

o Often large graphs require many machines.
@ Occasionally some vertices require multiple machines!

@ In Pregel, we must have a copy of the vertex in each machine.

Authors: Joseph Gonzalez, Yucheng Low,PowerGraph: Distributed Graph-Parallel ¢ 9/17

What is new then?

o Often large graphs require many machines.
@ Occasionally some vertices require multiple machines!

@ In Pregel, we must have a copy of the vertex in each machine.

(a) Edge-Cut

Authors: Joseph Gonzalez, Yucheng Low,PowerGraph: Distributed Graph-Parallel ¢ 9/17

What is new then?

Often large graphs require many machines.

Occasionally some vertices require multiple machines!

In Pregel, we must have a copy of the vertex in each machine.

G‘ O
(a) Edge-Cut
o Can introduce "ghost" edges.

Authors: Joseph Gonzalez, Yucheng Low,PowerGraph: Distributed Graph-Parallel ¢ 9/17

PowerGraph Solution

@ Use vertex cuts instead.

Authors: Joseph Gonzalez, Yucheng Low PowerGraph: Distributed Graph-Parallel ¢

PowerGraph Solution

@ Use vertex cuts instead.
@ Machines store edges. Each edge lies in exactly one machine.

@ Vertices may have replicas across machines.

Authors: Joseph Gonzalez, Yucheng Low,PowerGraph: Distributed Graph-Parallel ¢ 10/17

PowerGraph Solution

@ Use vertex cuts instead.
@ Machines store edges. Each edge lies in exactly one machine.

@ Vertices may have replicas across machines.
—H —=
—[E——0@
(=0 06—

(b) Vertex-Cut

Authors: Joseph Gonzalez, Yucheng Low,PowerGraph: Distributed Graph-Parallel ¢ 10/17

Handling Replicas
Some crucial details:

@ Since there are many replicas of vertices, PowerGraph employs the
master-follower paradigm to commit changes into vertices.

Authors: Joseph Gonzalez, Yucheng Low PowerGraph: Distributed Graph-Parallel ¢ 11 /17

Handling Replicas

Since there are many replicas of vertices, PowerGraph employs the master-

follower paradigm to commit changes into vertices.

(1) Gather

Accumulator

(Partial Sum)

(3) Apply
Updated

Vertex Data

(5) Scatter Machine 2

Gather

JOLIN

Scatter,

Machine 1

Figure 4: Replicas of a vertex
@ Master is randomly selected per set of replicas.

@ All changes directed to master.

@ Followers are read-only for everyone except the master

Authors: Joseph Gonzalez, Yucheng Low PowerGraph: Distributed Graph-Parallel ¢

11 /17

Balanced p-way Vertex Cuts

@ Since vertices are replicated across machines, can't we run into similar
memory and network problems as Pregel?

Authors: Joseph Gonzalez, Yucheng Low PowerGraph: Distributed Graph-Parallel ¢ 12 /17

Balanced p-way Vertex Cuts

@ Since vertices are replicated across machines, can't we run into similar
memory and network problems as Pregel?

o If we used edge cuts, yes. Not so much for vertex.
@ How do we distribute edges across machines?
e Randomly hash edges to machines i € {1,2,...p}?

Authors: Joseph Gonzalez, Yucheng Low PowerGraph: Distributed Graph-Parallel ¢ 12 /17

Balanced p-way Vertex Cuts

@ Since vertices are replicated across machines, can't we run into similar
memory and network problems as Pregel?

o If we used edge cuts, yes. Not so much for vertex.

@ How do we distribute edges across machines?

° \R(anldomly hash edges to machines i € {1,2,...p}?

o Yes!

Authors: Joseph Gonzalez, Yucheng Low PowerGraph: Distributed Graph-Parallel ¢ 12 /17

Balanced p-way Vertex Cuts

o Let A(v) be the machines that have replicas of vertex v where
AV)c{1,2,....p}
o Let A(e) be the machine containing edge e € E.

Authors: Joseph Gonzalez, Yucheng Low,PowerGraph: Distributed Graph-Parallel ¢ 13 /17

Analysis

o Let A(v) be the machines that have replicas of vertex v where
AV)c{1,2,....p}
o Let A(e) be the machine containing edge ecE.
m|n — |A(v
i 2540
s.t ‘E’
mn:ix]{e e E|Ale)=m} <)\7

Authors: Joseph Gonzalez, Yucheng Low,PowerGraph: Distributed Graph-Parallel ¢ 13 /17

Analysis

o Let A(v) be the machines that have replicas of vertex v where
A(V)C{1,2,....p}
o Let A(e) be the machine containing edge ecE.
m|n — |A(v
i vy 3 A
s.t £
max [{e € E | A(e) = m}| <)\u
m p
o We say we have a balanced p-way vertex cut for the edge assignments
corresponding to the solution to this optimization problem.

@ Somewhat difficult to solve. Can instead randomly hash edges to
machines

Authors: Joseph Gonzalez, Yucheng Low,PowerGraph: Distributed Graph-Parallel ¢ 13 /17

Analysis of Edge Hashing

Theorem 1: Randomized Vertex Cuts
A random vertex cut on p machines has expected replication

|V|Z| |V|Z(1‘< ‘%)DM)

Authors: Joseph Gonzalez, Yucheng Low PowerGraph: Distributed Graph-Parallel ¢

14 /17

Greedy Edge Hashing

@ It turns out that we can derandomize our randomized vertex algorithm
o Guarantees at least as good replica score as the randomized algorithm

o Greedily maximize the conditional replica score given the edge
assignments already completed.

Authors: Joseph Gonzalez, Yucheng Low,PowerGraph: Distributed Graph-Parallel ¢ 15 /17

A

Edge balancing

@ The previous theorem shows that as @ — 0, the replication factor

increases.

@ But compared to edge cuts, vertex cuts does significantly better

10

5 o=165
g8 =17
(18

_§ 6 =18
[o]

Q

§_4 a=2
T 2

—

men

Factor Improve

—_
o

3

=2

0 50 100 150
Number of Machines

(a) V-Sep. Bound

500
200
100
50ch= 1,65
a=1.7
zok a=18
50

o

100 150
Number of Machines

(b) V-Sep. Improvement

uthors: Joseph Gonzalez, Yucheng Low,PowerGraph: Distributed Graph-Parallel ¢

16 /17

Replication factor in real graphs

8 e e] 1000
Predi e
§ 14 redlcle«:.i:_,) 800
u"a_, Random{—.—":) e 8 Coordinated
= = Opiivi 8 600
a10 o,e' - blivious © Oblivious
i o £
% S £ 400(° . Random
. 3 . e
& 8o - Coordinated~._ T
:/.//" 2000 © e e,
2 ° - °
8 6 32 4 64 % s 32 48 64
#Machines #Machines
(a) Replication Factor (Twitter) (b) Ingress time (Twitter)

Authors: Joseph Gonzalez, Yucheng Low PowerGraph: Distributed Graph-Parallel ¢ 17 /17

	Setup
	GAS Abstraction
	Applications of PowerGraph
	PowerGraph Abstraction
	Experimental Results

