
PowerGraph: Distributed Graph-Parallel Computation on
Natural Graphs

Authors: Joseph Gonzalez, Yucheng Low, et al

Presenter: Ian Limarta

Authors: Joseph Gonzalez, Yucheng Low, et al (Presenter: Ian Limarta)PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs 1 / 17

Outline

1 Setup

2 GAS Abstraction

3 Applications of PowerGraph

4 PowerGraph Abstraction

5 Experimental Results

Authors: Joseph Gonzalez, Yucheng Low, et al (Presenter: Ian Limarta)PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs 2 / 17

Setup: Why PowerGraph?

Many graph frameworks deal with distributed data over large graphs
(e.g. Pregel, GraphLib, etc).
Thematic idea: Process over vertices to compute local neighborhood
data and then pass data to other vertices in future steps (possibly
across the network).
Often fails to scale well for vertices with large degrees. These
frameworks scale as the degree increases.
The lack of frameworks which incorporated natural power law
characteristics seen in many real life graphs motivated the
development of PowerGraph.

Authors: Joseph Gonzalez, Yucheng Low, et al (Presenter: Ian Limarta)PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs 3 / 17

Setup: Influence of Power Laws

Power Law
P [d] ∝ d−α where α is an exponent which controls skewness.

A higher α means more skewness or fewer outlier vertices.
Typically α ≈ 2. αtwitter ≈ 1.8

Authors: Joseph Gonzalez, Yucheng Low, et al (Presenter: Ian Limarta)PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs 4 / 17

Aside: Graph Parallel Abstractions

Let G (V ,E) be a sparse and N(v) be the adjacent vertices of v
Each vertex v ∈ V has the same executing vertex program, Q. Each
Q(v) may execute in parallel with other vertices’ programs.
Each v ∈ V has associated data Dv

Each edge e ∈ E has data D(u,v)

Authors: Joseph Gonzalez, Yucheng Low, et al (Presenter: Ian Limarta)PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs 5 / 17

Aside: Graph Parallel Abstractions

Let G (V ,E) be a sparse and N(v) be the adjacent vertices of v
Each vertex v ∈ V has the same executing vertex program, Q. Each
Q(v) may execute in parallel with other vertices’ programs.
Each v ∈ V has associated data Dv

Each edge e ∈ E has data D(u,v)

Gather, Apply, Scatter (GAS) Abstraction
Each vertex v undergoes the following steps:

1 Gather phase: Collect information of N(v) and combines information
into an aggregate statistic.

2 Apply phase: Apply the aggregate statistic to v

3 Scatter phase: Forward the changes in v to the adjacent edges.

Authors: Joseph Gonzalez, Yucheng Low, et al (Presenter: Ian Limarta)PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs 5 / 17

Aside: Graph Parallel Abstractions

Gather, Apply, Scatter (GAS) Abstraction
Each vertex v undergoes the following steps:

1 Gather phase: Collect information of N(v) and combines information
into an aggregate statistic.

2 Apply phase: Apply the aggregate statistic to v

3 Scatter phase: Forward the changes in v to the adjacent edges.

Authors: Joseph Gonzalez, Yucheng Low, et al (Presenter: Ian Limarta)PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs 5 / 17

Application: Graph Coloring

Given a graph G , color using c = 1, 2, . . . such that no two vertices
share the same color.

Authors: Joseph Gonzalez, Yucheng Low, et al (Presenter: Ian Limarta)PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs 6 / 17

Application: Graph Coloring

Given a graph G , color using c = 1, 2, . . . such that no two vertices
share the same color.

Figure 1: Greedy Graph Coloring

Authors: Joseph Gonzalez, Yucheng Low, et al (Presenter: Ian Limarta)PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs 6 / 17

Application: Graph Coloring

Given a graph G , color using c = 1, 2, . . . such that no two vertices
share the same color.

Figure 2: Greedy Graph Coloring

What is Activate()?

Authors: Joseph Gonzalez, Yucheng Low, et al (Presenter: Ian Limarta)PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs 6 / 17

GAS’s Termination Rules

Figure 3: Greedy Graph Coloring

A vertex remains activate until its vertex program terminates.
Becomes inactive.
Any vertex, including itself, can call Activate(v) to start a new
execution of GAS.
The graph procedure ends when all vertices are inactive.

Authors: Joseph Gonzalez, Yucheng Low, et al (Presenter: Ian Limarta)PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs 7 / 17

PowerGraph Abstraction

PowerGraph implements the GAS abstraction and rules via gather,
sum, apply, and scatter.
Can formulate Pregel and other libraries in terms of PowerGraph
abstraction
Unlike Pregel and PowerGraph, provides a caching method called
delta caching

Authors: Joseph Gonzalez, Yucheng Low, et al (Presenter: Ian Limarta)PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs 8 / 17

What is new then?

Often large graphs require many machines.
Occasionally some vertices require multiple machines!

Authors: Joseph Gonzalez, Yucheng Low, et al (Presenter: Ian Limarta)PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs 9 / 17

What is new then?

Often large graphs require many machines.
Occasionally some vertices require multiple machines!
In Pregel, we must have a copy of the vertex in each machine.

Authors: Joseph Gonzalez, Yucheng Low, et al (Presenter: Ian Limarta)PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs 9 / 17

What is new then?

Often large graphs require many machines.
Occasionally some vertices require multiple machines!
In Pregel, we must have a copy of the vertex in each machine.

Authors: Joseph Gonzalez, Yucheng Low, et al (Presenter: Ian Limarta)PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs 9 / 17

What is new then?

Often large graphs require many machines.
Occasionally some vertices require multiple machines!
In Pregel, we must have a copy of the vertex in each machine.

Can introduce "ghost" edges.

Authors: Joseph Gonzalez, Yucheng Low, et al (Presenter: Ian Limarta)PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs 9 / 17

PowerGraph Solution

Use vertex cuts instead.

Authors: Joseph Gonzalez, Yucheng Low, et al (Presenter: Ian Limarta)PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs 10 / 17

PowerGraph Solution

Use vertex cuts instead.
Machines store edges. Each edge lies in exactly one machine.
Vertices may have replicas across machines.

Authors: Joseph Gonzalez, Yucheng Low, et al (Presenter: Ian Limarta)PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs 10 / 17

PowerGraph Solution

Use vertex cuts instead.
Machines store edges. Each edge lies in exactly one machine.
Vertices may have replicas across machines.

Authors: Joseph Gonzalez, Yucheng Low, et al (Presenter: Ian Limarta)PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs 10 / 17

Handling Replicas

Some crucial details:
Since there are many replicas of vertices, PowerGraph employs the
master-follower paradigm to commit changes into vertices.

Authors: Joseph Gonzalez, Yucheng Low, et al (Presenter: Ian Limarta)PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs 11 / 17

Handling Replicas

Since there are many replicas of vertices, PowerGraph employs the master-
follower paradigm to commit changes into vertices.

Figure 4: Replicas of a vertex

Master is randomly selected per set of replicas.
All changes directed to master.
Followers are read-only for everyone except the master

Authors: Joseph Gonzalez, Yucheng Low, et al (Presenter: Ian Limarta)PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs 11 / 17

Balanced p-way Vertex Cuts

Since vertices are replicated across machines, can’t we run into similar
memory and network problems as Pregel?

Authors: Joseph Gonzalez, Yucheng Low, et al (Presenter: Ian Limarta)PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs 12 / 17

Balanced p-way Vertex Cuts

Since vertices are replicated across machines, can’t we run into similar
memory and network problems as Pregel?
If we used edge cuts, yes. Not so much for vertex.
How do we distribute edges across machines?
Randomly hash edges to machines i ∈ {1, 2, . . . p}?

Authors: Joseph Gonzalez, Yucheng Low, et al (Presenter: Ian Limarta)PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs 12 / 17

Balanced p-way Vertex Cuts

Since vertices are replicated across machines, can’t we run into similar
memory and network problems as Pregel?
If we used edge cuts, yes. Not so much for vertex.
How do we distribute edges across machines?
Randomly hash edges to machines i ∈ {1, 2, . . . p}?
Yes!

Authors: Joseph Gonzalez, Yucheng Low, et al (Presenter: Ian Limarta)PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs 12 / 17

Balanced p-way Vertex Cuts

Let A(v) be the machines that have replicas of vertex v where
A(V) ⊂ {1, 2, . . . , p}
Let A(e) be the machine containing edge e ∈ E .

Authors: Joseph Gonzalez, Yucheng Low, et al (Presenter: Ian Limarta)PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs 13 / 17

Analysis

Let A(v) be the machines that have replicas of vertex v where
A(V) ⊂ {1, 2, . . . , p}
Let A(e) be the machine containing edge e ∈ E .

min
A

1
|V |

∑
v∈V

|A(v)|

s.t
max
m

|{e ∈ E | A(e) = m}| < λ
|E |
p

Authors: Joseph Gonzalez, Yucheng Low, et al (Presenter: Ian Limarta)PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs 13 / 17

Analysis

Let A(v) be the machines that have replicas of vertex v where
A(V) ⊂ {1, 2, . . . , p}
Let A(e) be the machine containing edge e ∈ E .

min
A

1
|V |

∑
v∈V

|A(v)|

s.t
max
m

|{e ∈ E | A(e) = m}| < λ
|E |
p

We say we have a balanced p-way vertex cut for the edge assignments
corresponding to the solution to this optimization problem.
Somewhat difficult to solve. Can instead randomly hash edges to
machines

Authors: Joseph Gonzalez, Yucheng Low, et al (Presenter: Ian Limarta)PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs 13 / 17

Analysis of Edge Hashing

Theorem 1: Randomized Vertex Cuts
A random vertex cut on p machines has expected replication

E

[
1
|V |

∑
v∈V

|A(v)|

]
=

p

|V |
∑
v∈V

(
1 −

(
1 − 1

p

)D(v)
)

Authors: Joseph Gonzalez, Yucheng Low, et al (Presenter: Ian Limarta)PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs 14 / 17

Greedy Edge Hashing

It turns out that we can derandomize our randomized vertex algorithm
Guarantees at least as good replica score as the randomized algorithm
Greedily maximize the conditional replica score given the edge
assignments already completed.

Authors: Joseph Gonzalez, Yucheng Low, et al (Presenter: Ian Limarta)PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs 15 / 17

Edge balancing

The previous theorem shows that as α → 0, the replication factor
increases.
But compared to edge cuts, vertex cuts does significantly better

Authors: Joseph Gonzalez, Yucheng Low, et al (Presenter: Ian Limarta)PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs 16 / 17

Replication factor in real graphs

Authors: Joseph Gonzalez, Yucheng Low, et al (Presenter: Ian Limarta)PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs 17 / 17

	Setup
	GAS Abstraction
	Applications of PowerGraph
	PowerGraph Abstraction
	Experimental Results

